, , , e.a.

From Prognostics and Health Systems Management to Predictive Maintenance 1 – Monitoring and Prognostics

Monitoring and Prognostics

Specificaties
Gebonden, 182 blz. | Engels
John Wiley & Sons | e druk, 2016
ISBN13: 9781848219373
Rubricering
Juridisch :
John Wiley & Sons e druk, 2016 9781848219373
Levertijd ongeveer 9 werkdagen
Gratis verzonden

Samenvatting

This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.

Specificaties

ISBN13:9781848219373
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:182

Inhoudsopgave

<p>Introduction&nbsp; ix</p>
<p>Chapter 1. PHM and Predictive Maintenance&nbsp; 1</p>
<p>1.1. Anticipative maintenance and prognostics 1</p>
<p>1.1.1. New challenges and evolution of the maintenance function 1</p>
<p>1.1.2. Towards an anticipation of failure mechanisms 3</p>
<p>1.2. Prognostics and estimation of the remaining useful life (RUL)&nbsp; 5</p>
<p>1.2.1. What is it? Definition and measures of prognostics&nbsp; 5</p>
<p>1.2.2. How? Prognostic approaches 6</p>
<p>1.3. From data to decisions: the PHM process&nbsp; 9</p>
<p>1.3.1. Detection, diagnostics and prognostics 9</p>
<p>1.3.2. CBM Architecture and PHM process&nbsp; 10</p>
<p>1.4. Scope of the book 12</p>
<p>Chapter 2. Acquisition: From System to Data&nbsp; 15</p>
<p>2.1. Motivation and content&nbsp; 15</p>
<p>2.2. Critical components and physical parameters&nbsp; 16</p>
<p>2.2.1. Choice of critical components general approach 16</p>
<p>2.2.2. Dependability analysis of the system and related tools&nbsp; 17</p>
<p>2.2.3. Physical parameters to be observed 19</p>
<p>2.3. Data acquisition and storage 20</p>
<p>2.3.1. Choice of sensors 22</p>
<p>2.3.2. Data acquisition&nbsp; 23</p>
<p>2.3.3. Preprocessing and data storage&nbsp; 24</p>
<p>2.4. Case study: toward the PHM of bearings&nbsp; 25</p>
<p>2.4.1. From the train system to the critical component bearing 25</p>
<p>2.4.2. Experimental platform Pronostia 26</p>
<p>2.4.3. Examples of obtained signals 30</p>
<p>2.5. Partial synthesis&nbsp; 30</p>
<p>Chapter 3. Processing: From Data to Health Indicators 33</p>
<p>3.1. Motivation and content&nbsp; 33</p>
<p>3.2. Feature extraction 35</p>
<p>3.2.1. Mapping approaches 35</p>
<p>3.2.2. Temporal and frequency features&nbsp; 36</p>
<p>3.2.3. Time frequency features 38</p>
<p>3.3. Feature reduction/selection&nbsp; 48</p>
<p>3.3.1. Reduction of the feature space&nbsp; 48</p>
<p>3.3.2. Feature selection . 54</p>
<p>3.4. Construction of health indicators 62</p>
<p>3.4.1. An approach based on the Hilbert–Huang transform 62</p>
<p>3.4.2. Approach description and illustrative elements&nbsp; 62</p>
<p>3.5. Partial synthesis&nbsp; 63</p>
<p>Chapter 4. Health Assessment, Prognostics and Remaining Useful Life Part A 67</p>
<p>4.1. Motivation and content&nbsp; 67</p>
<p>4.2. Features prediction by means of connectionist networks 69</p>
<p>4.2.1. Long–term connectionist predictive systems&nbsp; 69</p>
<p>4.2.2. Prediction by means of fast neural networks 77</p>
<p>4.2.3. Applications in PHM problems and discussion 84</p>
<p>4.3. Classification of states and RUL estimation 88</p>
<p>4.3.1. Health state assessment without a priori information about the data 88</p>
<p>4.3.2. Toward increased performances: S–MEFC algorithm 93</p>
<p>4.3.3. Dynamic thresholding procedure&nbsp; 95</p>
<p>4.4. Application and discussion&nbsp; 97</p>
<p>4.4.1. Tests data and protocol&nbsp; 97</p>
<p>4.4.2. Illustration of the dynamic thresholding procedure&nbsp; 101</p>
<p>4.4.3. Performances of the approach&nbsp; 104</p>
<p>4.5. Partial synthesis&nbsp; 105</p>
<p>Chapter 5. Health Assessment, Prognostics, and Remaining Useful Life Part B 109</p>
<p>5.1. Motivation and object 109</p>
<p>5.2. Modeling and estimation of the health state 111</p>
<p>5.2.1. Fundamentals: the Hidden Markov Models (HMM)&nbsp; 111</p>
<p>5.2.2. Extension: mixture of Gaussians HMMs&nbsp; 117</p>
<p>5.2.3. State estimation by means of Dynamic Bayesian Networks 118</p>
<p>5.3. Behavior prediction and RUL estimation&nbsp; 124</p>
<p>5.3.1. Approach: Prognostics by means of DBNs 124</p>
<p>5.3.2. Learning of state sequences 124</p>
<p>5.3.3. Health state detection and RUL estimation 126</p>
<p>5.4. Application and discussion&nbsp; 129</p>
<p>5.4.1. Data and protocol of the tests 129</p>
<p>5.4.2. Health state identification 131</p>
<p>5.4.3. RUL estimation&nbsp; 133</p>
<p>5.5. Partial synthesis&nbsp; 135</p>
<p>Conclusion and Open Issues&nbsp; 137</p>
<p>Bibliography 143</p>
<p>Index&nbsp; 163</p>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        From Prognostics and Health Systems Management to Predictive Maintenance 1 – Monitoring and Prognostics