Pattern Recognition and Machine Learning

Specificaties
Gebonden, 740 blz. | Engels
Springer | 1e druk, 2011
ISBN13: 9780387310732
Rubricering
Hoofdrubriek : Computer en informatica
Juridisch :
Springer 1e druk, 2011 9780387310732
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning.

No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Specificaties

ISBN13:9780387310732
Trefwoorden:machine learning
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:740
Uitgever:Springer
Druk:1
Verschijningsdatum:6-4-2011
Hoofdrubriek:IT-management / ICT

Inhoudsopgave

Probability Distributions

-Linear Models for Regression
-Linear Models for Classification
-Neural Networks
-Kernel Methods
-Sparse Kernel Machines
-Graphical Models
-Mixture Models and EM
-Approximate Inference
-Sampling Methods
-Continuous Latent Variables
-Sequential Data
-Combining Models

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Pattern Recognition and Machine Learning