Forensic Chemistry Handbook

Specificaties
Gebonden, 544 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9780471739548
Rubricering
Juridisch :
John Wiley & Sons e druk, 2012 9780471739548
€ 165,79
Levertijd ongeveer 16 werkdagen
Gratis verzonden

Samenvatting

The
Forensic Chemistry Handbook provides both practicing forensic scientists and beginners with a concise, but not trivial introduction to various topics covered by the discipline of forensic chemistry. It supplies references to more authoritative books and journals in the literature and provides answers to specific questions or problems pertaining to subjects such as the analysis of: blood, semen, saliva, urine, DNA, explosives, drugs, accelerants, etc. The approach is practical in its orientation, keeping in mind the needs of the user.

Specificaties

ISBN13:9780471739548
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:544

Inhoudsopgave

Preface xv
<p>Contributors xxi</p>
<p>1. Forensic Environmental Chemistry 1<br /> Anthony Carpi and Andrew J. Schweighardt</p>
<p>1.1 Introduction 2</p>
<p>1.2 Chemical Fingerprinting 4</p>
<p>1.2.1 Hydrocarbon Mixtures 4</p>
<p>1.2.2 Polycyclic Aromatic Hydrocarbons 6</p>
<p>1.2.3 Biomarkers 11</p>
<p>1.2.4 Additives 11</p>
<p>1.2.5 Isotopes 12</p>
<p>1.2.6 Tracers 13</p>
<p>1.2.7 Methods of Detection 16</p>
<p>1.2.8 Weathering 18</p>
<p>1.3 Spatial Association of Environmental Incidents 18</p>
<p>References 20</p>
<p>2. Principles and Issues in Forensic Analysis of Explosives 23<br /> Jimmie C. Oxley, Maurice Marshall, and Sarah L. Lancaster</p>
<p>2.1 Introduction 24</p>
<p>2.2 Sample Collection 25</p>
<p>2.3 Packaging 29</p>
<p>2.4 Sorting 30</p>
<p>2.5 Documentation 31</p>
<p>2.6 Environmental Control and Monitoring 31</p>
<p>2.7 Storage 33</p>
<p>2.8 Analysis 33</p>
<p>2.9 Records 36</p>
<p>2.10 Quality Assurance 36</p>
<p>2.11 Safety and Other Issues 37</p>
<p>Conclusion 37</p>
<p>References 38</p>
<p>3. Analysis of Fire Debris 41<br /> John J. Lentini</p>
<p>3.1 Introduction 42</p>
<p>3.2 Evolution of Separation Techniques 43</p>
<p>3.3 Evolution of Analytical Techniques 47</p>
<p>3.4 Evolution of Standard Methods 49</p>
<p>3.5 Isolating the Residue 51</p>
<p>3.5.1 Initial Sample Evaluation 51</p>
<p>3.5.2 ILR Isolation Method Selection 51</p>
<p>3.5.3 Solvent Selection 54</p>
<p>3.5.4 Internal Standards 54</p>
<p>3.5.5 Advantages and Disadvantages of Isolation Methods 56</p>
<p>3.6 Analyzing the Isolated ILR 56</p>
<p>3.6.1 Criteria for Identification 63</p>
<p>3.6.2 Improving Sensitivity 90</p>
<p>3.6.3 Estimating the Degree of Evaporation 95</p>
<p>3.6.4 Identity of Source 98</p>
<p>3.7 Reporting Procedures 101</p>
<p>3.8 Record Keeping 102</p>
<p>3.9 Quality Assurance 105</p>
<p>Conclusion 105</p>
<p>References 106</p>
<p>4. Forensic Examination of Soils 109<br /> Raymond C. Murray</p>
<p>4.1 Introduction 110</p>
<p>4.2 Murder and the Pond 111</p>
<p>4.3 Oil Slicks and Sands 113</p>
<p>4.4 Medical Link 114</p>
<p>4.5 Examination Methods 114</p>
<p>4.5.1 Color 115</p>
<p>4.5.2 Particle–Size Distribution 117</p>
<p>4.5.3 Stereo Binocular Microscope 120</p>
<p>4.5.4 Petrographic Microscope 122</p>
<p>4.5.5 Refractive Index 124</p>
<p>4.5.6 Cathodoluminescence 124</p>
<p>4.5.7 Scanning Electron Microscope 125</p>
<p>4.5.8 X–Ray Diffraction 126</p>
<p>4.6 Chemical Methods 127</p>
<p>4.6.1 FTIR and Raman Spectroscopy 128</p>
<p>4.7 Looking Ahead 129</p>
<p>References 130</p>
<p>5. Analysis of Paint Evidence 131<br /> Scott G. Ryland and Edward M. Suzuki</p>
<p>5.1 Introduction 132</p>
<p>5.2 Paint Chemistry and Color Science 134</p>
<p>5.2.1 Binders 134</p>
<p>5.2.2 Pigments 136</p>
<p>5.3 Types of Paint 139</p>
<p>5.3.1 Automotive Finish Systems 139</p>
<p>5.3.2 Architectural Coatings (Structural Paints or House Paints) 140</p>
<p>5.3.3 Other Coatings 141</p>
<p>5.4 Paint Evidence Interpretation Considerations 141</p>
<p>5.5 Analytical Methods 142</p>
<p>5.5.1 Microscopic Examinations 143</p>
<p>5.5.2 Physical Nature of the Transfer 147</p>
<p>5.5.3 Microscopy 149</p>
<p>5.5.4 Microspectrophotometry 152</p>
<p>5.5.5 Infrared Spectroscopy 158</p>
<p>5.5.6 Raman Spectroscopy 175</p>
<p>5.5.7 Pyrolysis Gas Chromatography and Pyrolysis Gas Chromatography Mass Spectrometry 178</p>
<p>5.5.8 Elemental Analysis Methods 188</p>
<p>5.5.9 Other Methods 205</p>
<p>5.6 Examples 208</p>
<p>5.6.1 Example 1 208</p>
<p>5.6.2 Example 2 210</p>
<p>5.6.3 Example 3 213</p>
<p>References 217</p>
<p>6. Analysis Techniques Used for the Forensic Examination of Writing and Printing Inks 225<br /> Gerald M. LaPorte and Joseph C. Stephens</p>
<p>6.1 Introduction 226</p>
<p>6.2 Ink 226</p>
<p>6.2.1 Ink Composition 227</p>
<p>6.3 Ink Analysis 230</p>
<p>6.3.1 Physical Examinations 233</p>
<p>6.3.2 Optical Examinations 236</p>
<p>6.3.3 Chemical Examinations 238</p>
<p>6.3.4 Ink Dating 240</p>
<p>6.4 Office Machine Systems 242</p>
<p>6.4.1 Inkjet Ink 242</p>
<p>6.4.2 Inkjet Ink Analysis 243</p>
<p>6.4.3 Toner Printing 245</p>
<p>6.4.4 Toner Analysis 246</p>
<p>Conclusion 247</p>
<p>References 248</p>
<p>7. The Role of Vibrational Spectroscopy in Forensic Chemistry 251<br /> Ali Ko&ccedil;ak</p>
<p>7.1 Introduction to Vibrational Spectroscopy 252</p>
<p>7.2 Infrared Spectroscopy 253</p>
<p>7.3 Infrared Sampling Techniques 255</p>
<p>7.3.1 Transmission Spectroscopy 255</p>
<p>7.3.2 External Reflection Spectroscopy 255</p>
<p>7.3.3 Attenuated Total Reflectance 256</p>
<p>7.3.4 Diffuse Reflectance Spectroscopy 258</p>
<p>7.3.5 Infrared Microspectroscopy 259</p>
<p>7.4 Raman Spectroscopy 260</p>
<p>7.5 Raman Spectroscopic Techniques 262</p>
<p>7.5.1 Surface–Enhanced Raman Spectroscopy 262</p>
<p>7.5.2 Resonance Raman Scattering 263</p>
<p>7.5.3 Coherent anti–Stokes Raman Spectroscopy 263</p>
<p>7.5.4 Confocal Raman Spectroscopy 263</p>
<p>7.6 Applications of Vibrational Spectroscopy in Forensic Analysis 264</p>
<p>References 265</p>
<p>8. Forensic Serology 269<br /> Richard Li</p>
<p>8.1 Introduction 270</p>
<p>8.2 Identification of Blood 271</p>
<p>8.2.1 Oxidation Reduction Reactions 272</p>
<p>8.2.2 Microcrystal Assays 275</p>
<p>8.2.3 Other Assays for Blood Identification 275</p>
<p>8.3 Species Identification 278</p>
<p>8.3.1 Immunochromatographic Assays 278</p>
<p>8.3.2 Ouchterlony Assay 280</p>
<p>8.3.3 Crossed–Over Immunoelectrophoresis 281</p>
<p>8.4 Identification of Semen 282</p>
<p>8.4.1 Visual Examination 282</p>
<p>8.4.2 Acid Phosphatase Assays 283</p>
<p>8.4.3 Microscopic Examination of Spermatozoa 284</p>
<p>8.4.4 Immunochromatographic Assays 285</p>
<p>8.4.5 RNA–Based Assays 286</p>
<p>8.5 Identification of Saliva 286</p>
<p>8.5.1 Visual and Microscopic Examination 287</p>
<p>8.5.2 Identification of Amylase 287</p>
<p>8.5.3 RNA–Based Assays 289</p>
<p>References 289</p>
<p>9. Forensic DNA Analysis 291<br /> Henrietta Margolis Nunno</p>
<p>9.1 Introduction 292</p>
<p>9.1.1 Background on DNA Typing 292</p>
<p>9.1.2 DNA Structure 294</p>
<p>9.1.3 Nuclear and Mitochondrial DNA Organization 295</p>
<p>9.2 Methodology 296</p>
<p>9.2.1 Sample Collection and DNA Extraction 296</p>
<p>9.2.2 DNA Quantification 297</p>
<p>9.2.3 Polymerase Chain Reaction 298</p>
<p>9.2.4 Short Tandem Repeats 298</p>
<p>9.2.5 PCR of STRs 300</p>
<p>9.2.6 Separation and Sizing of STR Alleles 301</p>
<p>9.2.7 Combined DNA Index System (CODIS) Database 305</p>
<p>9.2.8 Frequency and Probability 306</p>
<p>9.3 Problems Encountered in STR Analysis 307</p>
<p>9.3.1 Low–Copy–Number DNA 307</p>
<p>9.3.2 Degraded DNA and Reduced–Size (mini) STR Primer Sets 308</p>
<p>9.3.3 PCR Inhibition 310</p>
<p>9.3.4 Interpretation of Mixtures of DNA 310</p>
<p>9.3.5 Null Alleles and Allele Dropout 311</p>
<p>9.3.6 Factors Causing Extra Peaks in Results Observed 312</p>
<p>9.3.7 Stutter Product Peaks 312</p>
<p>9.3.8 Nontemplate Addition (Incomplete Adenylation) 313</p>
<p>9.3.9 Technological Artifacts 313</p>
<p>9.3.10 Single–Nucleotide Polymorphism Analysis of Autosomal DNA SNPs 313</p>
<p>9.3.11 Methods Used for SNP Analysis 314</p>
<p>9.3.12 Mitochondrial DNA Analysis 315</p>
<p>9.4 Methodology for mtDNA Analysis 316</p>
<p>9.4.1 Preparation of Samples 316</p>
<p>9.4.2 MtDNA Sequencing Methods 316</p>
<p>9.4.3 Reference Sequences 317</p>
<p>9.4.4 Screening Assays for mtDNA 318</p>
<p>9.4.5 Interpretation of mtDNA Sequencing Results 319</p>
<p>9.4.6 Statistics: The Meaning of a Match for mtDNA 320</p>
<p>9.4.7 Heteroplasmy 320</p>
<p>9.4.8 The Future of DNA Analysis 321</p>
<p>References 322</p>
<p>10. Current and Future Uses of DNA Microarrays in Forensic Science 327<br /> Nathan H. Lents</p>
<p>10.1 Introduction 328</p>
<p>10.2 What is a DNA Microarray? 328</p>
<p>10.2.1 cDNA Microarray 329</p>
<p>10.2.2 Other Types of DNA Arrays 330</p>
<p>10.2.3 The Birth of –omics 331</p>
<p>10.3 DNA Microarrays in Toxicogenomics 332</p>
<p>10.3.1 Sharing Information 333</p>
<p>10.3.2 Forensic Application 333</p>
<p>10.4 Detection of Microorganisms Using Microarrays 334</p>
<p>10.4.1 Historical Perspective 334</p>
<p>10.4.2 DNA Fingerprinting 335</p>
<p>10.4.3 DNA Fingerprinting by Microarrays 336</p>
<p>10.4.4 DNA Sequence–Based Detection 337</p>
<p>10.4.5 Where DNA Microarrays Come In 337</p>
<p>10.4.6 Looking Forward: Genetic Virulence Signatures 338</p>
<p>10.5 Probing Human Genomes by DNA Microarrays 340</p>
<p>10.5.1 STR Analysis 340</p>
<p>10.5.2 SNP Analysis 343</p>
<p>10.5.3 Exploring an Unknown Genome? 344</p>
<p>Conclusion 345</p>
<p>References 345</p>
<p>11. Date–Rape Drugs with Emphasis on GHB 355<br /> Stanley M. Parsons</p>
<p>11.1 Introduction 357</p>
<p>11.2 Molecular Mechanisms of Action 357</p>
<p>11.2.1 Receptors and Transporters 357</p>
<p>11.2.2 Real GHB Receptors 359</p>
<p>11.3 Societal Context of Date–Rape Agents 361</p>
<p>11.3.1 Acute Effects of Date–Rape Agents on Cognition and Behavior 361</p>
<p>11.3.2 Medicinal Uses of Date–Rape Drugs 361</p>
<p>11.3.3 Self–Abuse 362</p>
<p>11.3.4 Date Rape, Death, and Regulation 363</p>
<p>11.4 Metabolism Fundamentals 363</p>
<p>11.4.1 Complexity in Unraveling Metabolism of GHB–Related Compounds 363</p>
<p>11.4.2 Isozymes in GHB–Related Metabolism 364</p>
<p>11.4.3 Subcellular Compartmentalization of Enzymes, Transporters, and Substrates 364</p>
<p>11.4.4 Dynamics and Equilibria for Enzymes and Transporters 365</p>
<p>11.4.5 Thermodynamics–Based Analysis of Metabolic Flux 366</p>
<p>11.4.6 Metabolism of Endogenous GHB Versus Ingested GHB and Prodrugs 367</p>
<p>11.4.7 Directionality of in Vivo and in Vitro Enzymatic Activity 367</p>
<p>11.4.8 Transporters and Enzymes Mediating GHB–Related Metabolism 367</p>
<p>11.5 Biosynthesis of Endogenous GHB 368</p>
<p>11.5.1 First Step for GHB Biosynthesis in the Known Pathway 368</p>
<p>11.5.2 Second Step for GHB Biosynthesis in the known Pathway 368</p>
<p>11.5.3 Third Step for GHB Biosynthesis in the known Pathway 371</p>
<p>11.5.4 Which Step in GHB Biosynthesis is Rate Limiting? 373</p>
<p>11.5.5 Are There Other Biosynthetic Pathways to Endogenous GHB? 374</p>
<p>11.6 Absorption and Distribution of Ingested GHB 376</p>
<p>11.6.1 Gastrointestinal Tract 376</p>
<p>11.6.2 Blood 377</p>
<p>11.7 Initial Catabolism of GHB 377</p>
<p>11.7.1 Transport into Mitochondria 377</p>
<p>11.7.2 Iron–Dependent Alcohol Dehydrogenase ADHFe1 377</p>
<p>11.7.3 Poorly Characterized Catabolism of GHB 379</p>
<p>11.8 Chemistry of GHB and Related Metabolites not Requiring Enzymes 380</p>
<p>11.9 Experimental Equilibrium Constants for Redox Reactions of GHB 380</p>
<p>11.10 Estimated Equilibrium Constants for Redox Reactions of GHB in Vivo 381</p>
<p>11.11 Different Perspectives on Turnover of Endogenous GHB are Consistent 384</p>
<p>11.12 Disposition of Succinic Semialdehyde 385</p>
<p>11.13 Conversion of Prodrugs to GHB and Related Metabolites 386</p>
<p>11.13.1 ?–Butyrolactone 386</p>
<p>11.13.2 1,4–Butanediol 387</p>
<p>11.14 Subcellular Compartmentalization of GHB–Related Compounds 388</p>
<p>11.15 Comparative Catabolism of Ethanol, 1,4–Butanediol, Fatty Acids, and GHB 389</p>
<p>11.16 Catabolism of MDMA, Flunitrazepam, and Ketamine 390</p>
<p>11.17 Detection of Date–Rape Drugs 390</p>
<p>11.17.1 Compounds Diagnostic for Dosing by Synthetic Date–Rape Drugs 390</p>
<p>11.17.2 Compounds Diagnostic for Dosing by GHB 390</p>
<p>11.17.3 Gold–Standard Testing 391</p>
<p>11.17.4 Many Applications for Reliable Field Tests 392</p>
<p>11.17.5 Hospital Emergency Department Example 392</p>
<p>11.17.6 Preparation of a Sample for Delayed Analysis 393</p>
<p>11.17.7 Time Window Available to Detect Dosing 393</p>
<p>11.17.8 Extending the Time Window 394</p>
<p>11.18 Special Circumstances of GHB 395</p>
<p>11.18.1 Industrial Connection 395</p>
<p>11.18.2 Enzymes Acting on GHB in Bacteria, Yeast, and Plants 395</p>
<p>11.18.3 Possible Accidental Intoxication by GHB in the Future 395</p>
<p>11.19 Considerations During Development of Field Tests 396</p>
<p>11.19.1 Shortcomings of Antibody–Based Screens for Simple Analytes 396</p>
<p>11.19.2 Advantages of Enzyme–Based Screens for Simple Natural Analytes 397</p>
<p>11.20 Development of an Enzymatic Test for GHB 399</p>
<p>11.20.1 Sensitivity Required for the Hospital Emergency Department 399</p>
<p>11.20.2 Choice of Enzyme 399</p>
<p>11.20.3 Reliable Field Test for GHB 400</p>
<p>Conclusion 402</p>
<p>Notes 404</p>
<p>References 406</p>
<p>12. Forensic and Clinical Issues in Alcohol Analysis 435<br /> Richard Stripp</p>
<p>12.1 Introduction 436</p>
<p>12.2 Blood Alcohol Concentration 437</p>
<p>12.3 Alcohol Impairment and Driving Skills 441</p>
<p>12.4 Field Sobriety Tests 443</p>
<p>12.5 Blood Alcohol Measurements 444</p>
<p>12.5.1 Enzymatic Methods 444</p>
<p>12.5.2 Headspace Gas Chromatography 445</p>
<p>12.5.3 Breath Alcohol Testing 446</p>
<p>12.5.4 Breath Alcohol Instrumentation 447</p>
<p>12.5.5 Extrapolation from BrAC to BAC 449</p>
<p>12.5.6 Urine and Saliva 450</p>
<p>12.5.7 Ethyl Glucuronide 450</p>
<p>12.5.8 Postmortem Determination of Alcohol 451</p>
<p>12.5.9 Quality Assurance of Alcohol Testing 452</p>
<p>References 453</p>
<p>13. Fundamental Issues of Postmortem Toxicology 457<br /> Donald B. Hoffman, Beth E. Zedeck, and Morris S. Zedeck</p>
<p>13.1 Introduction 458</p>
<p>13.2 Tissue and Fluid Specimens 460</p>
<p>13.2.1 Blood 460</p>
<p>13.2.2 Urine 461</p>
<p>13.2.3 Vitreous Humor and Cerebrospinal Fluid 461</p>
<p>13.2.4 Gastric Contents 462</p>
<p>13.2.5 Meconium 463</p>
<p>13.2.6 Brain 464</p>
<p>13.2.7 Liver and Bile 464</p>
<p>13.2.8 Lung, Spleen, Kidney, and Skin 465</p>
<p>13.2.9 Muscle 465</p>
<p>13.2.10 Bone, Teeth, Nails, and Hair 465</p>
<p>13.2.11 Other Materials for Analysis 466</p>
<p>13.3 Specimen Collection and Storage 466</p>
<p>13.4 Extraction Procedures 467</p>
<p>13.5 Analytical Techniques 467</p>
<p>13.6 Interpretation 470</p>
<p>13.6.1 Postmortem Redistribution 470</p>
<p>13.6.2 Pharmacogenomics 471</p>
<p>13.6.3 Drug Interactions 472</p>
<p>13.6.4 Drug Stability and Decomposed Tissue 473</p>
<p>13.6.5 Effects of Embalming Fluid 474</p>
<p>Conclusion 475</p>
<p>References 476</p>
<p>14. Entomotoxicology: Drugs, Toxins, and Insects 483<br /> Jason H. Byrd and Michelle R. Peace</p>
<p>14.1 Introduction 484</p>
<p>14.2 The Fly and Forensic Science 484</p>
<p>14.2.1 History of Forensic Entomology, Toxicology, and the Rise of Entomotoxicology 485</p>
<p>14.2.2 Drugs and the Fly Life Cycle 488</p>
<p>14.2.3 Why Use Insects as a Toxicological Specimen? 490</p>
<p>14.2.4 Drug Extraction Methods 492</p>
<p>14.2.5 Qualitative Versus Quantitative 493</p>
<p>14.2.6 Changes in Insect Development: Toxins and Drugs 494</p>
<p>14.2.7 The Future of Entomotoxicology 494</p>
<p>References 495</p>
<p>Index 501</p>

Net verschenen

€ 165,79
Levertijd ongeveer 16 werkdagen
Gratis verzonden

Rubrieken

    Personen

      Trefwoorden

        Forensic Chemistry Handbook