Python and HDF5

Unlocking Scientific Data

Specificaties
Paperback, 135 blz. | Engels
O'Reilly | 1e druk, 2013
ISBN13: 9781449367831
Rubricering
Hoofdrubriek : Computer en informatica
O'Reilly 1e druk, 2013 9781449367831
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.

Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.

- Get set up with HDF5 tools and create your first HDF5 file
- Work with datasets by learning the HDF5 Dataset object
- Understand advanced features like dataset chunking and compression
- Learn how to work with HDF5's hierarchical structure, using groups
- Create self-describing files by adding metadata with HDF5 attributes
- Take advantage of HDF5's type system to create interoperable files
- Express relationships among data with references, named types, and dimension scales
- Discover how Python mechanisms for writing parallel code interact with HDF5

Specificaties

ISBN13:9781449367831
Taal:Engels
Bindwijze:paperback
Aantal pagina's:135
Uitgever:O'Reilly
Druk:1
Verschijningsdatum:31-10-2013

Inhoudsopgave

Preface

1. Introduction
-Python and HDF5
-What Exactly Is HDF5?

2. Getting Started
-HDF5 Basics
-Setting Up
-The HDF5 Tools
-Your First HDF5 File

3. Working with Datasets
-Dataset Basics
-Reading and Writing Data
-Resizing Datasets

4. How Chunking and Compression Can Help You
-Contiguous Storage
-Chunked Storage
-Setting the Chunk Shape
-Performance Example: Resizable Datasets
-Filters and Compression
-Other Filters
-Third-Party Filters

5. Groups, Links, and Iteration: The "H" in HDF5
-The Root Group and Subgroups
-Group Basics
-Working with Links
-Iteration and Containership
-Multilevel Iteration with the Visitor Pattern
-Copying Objects
-Object Comparison and Hashing

6. Storing Metadata with Attributes
-Attribute Basics
-Real-World Example: Accelerator Particle Database

7. More About Types
-The HDF5 Type System
-Integers and Floats
-Fixed-Length Strings
-Variable-Length Strings
-Compound Types
-Complex Numbers
-Enumerated Types
-Booleans
-The array Type
-Opaque Types
-Dates and Times

8. Organizing Data with References, Types, and Dimension Scales
-Object References
-Region References
-Named Types
-Dimension Scales

9. Concurrency: Parallel HDF5, Threading, and Multiprocessing
-Python Parallel Basics
-Threading
-Multiprocessing
-MPI and Parallel HDF5

10. Next Steps
-Asking for Help
-Contributing

Index

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Python and HDF5