Materials under Extreme Loadings – Application to Penetration and Impact

Application to Penetration and Impact

Specificaties
Gebonden, 442 blz. | Engels
John Wiley & Sons | e druk, 2010
ISBN13: 9781848211841
Rubricering
Juridisch :
John Wiley & Sons e druk, 2010 9781848211841
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book presents recent and cutting edge advances in our understanding of key aspects of the response of materials under extreme loads that take place during high velocity impact and penetration. The focus of the content is on the numerous challenges associated with characterization and modeling of complex interactions that occur during these highly dynamic events.

Specificaties

ISBN13:9781848211841
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:442
Serie:ISTE

Inhoudsopgave

<p>Preface xv</p>
<p>Chapter 1. Geomaterials Under Extreme Loading: The Natural Case 1<br /> Philippe LAMBERT and Herv&eacute; TRUMEL</p>
<p>1.1. Introduction 1</p>
<p>1.2. Natural impacts 2</p>
<p>1.3. Discussion 27</p>
<p>1.4. Conclusions 32</p>
<p>1.5. Bibliography 33</p>
<p>PART 1. EXPERIMENTAL CHARACTERIZATION 45</p>
<p>Chapter 2. The Shock Properties of Concrete and Related Materials 47<br /> Kostas TSEMBELIS, David J. CHAPMAN, Christopher H. BRAITHWAITE, John E. FIELD and William G. PROUD</p>
<p>2.1. Introduction 47</p>
<p>2.2. Experimental studies 53</p>
<p>2.3. Conclusion 65</p>
<p>2.4. Acknowledgments 65</p>
<p>2.5. Bibliography 66</p>
<p>Chapter 3. Comparison of Shocked Sapphire and Alumina 69<br /> Geremy KLEISER, Lalit CHHABILDAS and William REINHART</p>
<p>3.1. Abstract 69</p>
<p>3.2. Introduction 70</p>
<p>3.3. Material 71</p>
<p>3.4. Experimental method 72</p>
<p>3.5. Experimental results 73</p>
<p>3.6. Conclusions 84</p>
<p>3.7. Acknowledgments 84</p>
<p>3.8. Bibliography 84</p>
<p>Chapter 4. Observations of Ballistic Impact Damage in Glass Laminate 87<br /> Stephan BLESS</p>
<p>4.1. Introduction 87</p>
<p>4.2. Transient measurements 88</p>
<p>4.3. Post–test measurements 90</p>
<p>4.4. Multiple impacts 97</p>
<p>4.5. Discussion and summary 97</p>
<p>4.6. Acknowledgments 98</p>
<p>4.7. Bibliography 98</p>
<p>Chapter 5. Experimental Analysis of Concrete Behavior Under High Confinement 101<br /> Xuan Hong VU, Yann MALECOT, Laurent DAUDEVILLE and Eric BUZAUD</p>
<p>5.1. Introduction 101</p>
<p>5.2. Experimental device 102</p>
<p>5.3. Influence of the water/cement ratio 105</p>
<p>5.4. Influence of the coarse aggregate size 106</p>
<p>5.5. Influence of the cement paste volume 113</p>
<p>5.6. Conclusion and future work 116</p>
<p>5.7. Acknowledgment 118</p>
<p>5.8. Bibliography 118</p>
<p>Chapter 6. 3D Imaging and the Split Cylinder Fracture of Cement–Based Composites 121<br /> Eric LANDIS</p>
<p>6.1. Introduction 121</p>
<p>6.2. Methods and materials 122</p>
<p>6.3. Experiments and analysis 126</p>
<p>6.4. Experimental results 128</p>
<p>6.5. Conclusions 129</p>
<p>6.6. Bibliography 130</p>
<p>Chapter 7. Testing Conditions on Kolsky Bar 131<br /> Weinong CHEN</p>
<p>7.1. Introduction 131</p>
<p>7.2. Kolsky bar 132</p>
<p>7.3. Limitations of the Kolsky bar 133</p>
<p>7.4. Methods for conducting valid Kolsky bar experiments 136</p>
<p>7.5. Conclusions 142</p>
<p>7.6. Bibliography 143</p>
<p>PART 2. MATERIAL MODELING 145</p>
<p>Chapter 8. Experimental Approach and Modeling of the Dynamic Tensile Behavior of a Micro–Concrete 147<br /> Pascal FORQUIN and Benjamin ERZAR</p>
<p>8.1. Introduction 147</p>
<p>8.2. Experimental device 149</p>
<p>8.3. Data processing 151</p>
<p>8.4. Experimental results 154</p>
<p>8.5. Modeling of the damage process in concrete at high strain–rates (the Denoual, Forquin, Hild model) 158</p>
<p>8.6. Conclusion 172</p>
<p>8.7. Bibliography 175</p>
<p>Chapter 9. Toward Physically–Based Explosive Modeling: Meso–Scale Investigations 179<br /> Herv&eacute; TRUMEL, Philippe LAMBERT, Guillaume VIVIER and Yves SADOU</p>
<p>9.1. Introduction 179</p>
<p>9.2. Methodology 181</p>
<p>9.3. The material: microstructure and macroscopic mechanical behavior 182</p>
<p>9.4. Samples from unitary experiments 185</p>
<p>9.5. Analysis of a recovered target 193</p>
<p>9.6. Discussion 198</p>
<p>9.7. Conclusion and future work 204</p>
<p>9.8. Acknowledgments 204</p>
<p>9.9. Bibliography 204</p>
<p>Chapter 10. Coupled Viscoplastic Damage Model for Hypervelocity Impact Induced Damage in Metals and Composites 209<br /> George Z. VOYIADJIS</p>
<p>10.1. Introduction 209</p>
<p>10.2. Theoretical preliminaries for high velocity impact 212</p>
<p>10.3. A coupled rate–dependent (viscoplasticity) continuum damage theory 214</p>
<p>10.4. Computational aspects of the proposed theory 220</p>
<p>10.5. Numerical applications 228</p>
<p>10.6. Conclusions 240</p>
<p>10.7. Bibliography 241</p>
<p>Chapter 11. High–Pressure Behavior of Concrete: Experiments and Elastic/Viscoplastic Modeling 247<br /> Martin J. SCHMIDT, Oana CAZACU and Mark L. GREEN</p>
<p>11.1. Introduction 247</p>
<p>11.2. Experimental study 249</p>
<p>11.3. Elastic–viscoplastic model development 254</p>
<p>11.4. Conclusions 263</p>
<p>11.5. Bibliography 264</p>
<p>Chapter 12. The Virtual Penetration Laboratory: New Developments 267<br /> Mark D. ADLEY, Andreas O. FRANK, Kent T. DANIELSON, Stephen A. AKERS, James L. O DANIEL and Bruce PATTERSON</p>
<p>12.1. Introduction 267</p>
<p>12.2. Constitutive model development 268</p>
<p>12.3. Perforation simulations 278</p>
<p>12.4. Penetration simulations 282</p>
<p>12.5. CSPC penetration resistance equation 284</p>
<p>12.6. Conclusions 287</p>
<p>12.7. Acknowledgment 288</p>
<p>12.8. Bibliography 288</p>
<p>Chapter 13. Description of the Dynamic Fragmentation of Glass with a Meso–Damage Model 291<br /> Xavier BRAJER, Fran&ccedil;ois HILD and St&eacute;phane ROUX</p>
<p>13.1. Introduction 291</p>
<p>13.2. Experimental results 292</p>
<p>13.3. Fragmentation analysis 294</p>
<p>13.4. Microcracking analysis 299</p>
<p>13.5. A meso–damage approach 302</p>
<p>13.6. Conclusion 306</p>
<p>13.7. Acknowledgments 307</p>
<p>13.8. Bibliography 307</p>
<p>PART 3. NUMERICAL SIMULATION TECHNIQUES 311</p>
<p>Chapter 14. An Approach to Generate Random Localizations in Lagrangian Numerical Simulations 313<br /> Jacques PETIT</p>
<p>14.1. Introduction 313</p>
<p>14.2. Numerical modeling 314</p>
<p>14.3. Electromagnetic compression and its regular use 318</p>
<p>14.4. Numerical simulations without rupture: copper and nickel samples 321</p>
<p>14.5. Numerical simulations with rupture: TA6V4 samples 323</p>
<p>14.6. Conclusion 328</p>
<p>14.7. Bibliography 330</p>
<p>Chapter 15. X–FEM for the Simulation of Dynamic Crack Propagation 333<br /> Alain COMBESCURE</p>
<p>15.1. Energy conservation when a crack propagates: a key issue 333</p>
<p>15.2. Dynamic crack propagation laws 339</p>
<p>15.3. Experiments interpretation 341</p>
<p>15.4. Bibliography 348</p>
<p>Chapter 16. DEM Model of a Rigid Missile Impact on a Thin Concrete Slab 351<br /> Fr&eacute;d&eacute;ric DONZ&Eacute;, Wen–Jie SHIU and Laurent DAUDEVILLE</p>
<p>16.1. Introduction 351</p>
<p>16.2. The DEM model 353</p>
<p>16.3. Modeling of the impact tests 355</p>
<p>16.4. Influence of reinforcement ratio 358</p>
<p>16.5. Influence of the nose shape of missile 361</p>
<p>16.6. Conclusion 365</p>
<p>16.7. Bibliography 365</p>
<p>Chapter 17. The Lattice Discrete Particle Model (LDPM) for the Numerical Simulation of Concrete Behavior Subject to Penetration 369<br /> Gianluca CUSATIS</p>
<p>17.1. Introduction 369</p>
<p>17.2. Review of LDPM formulation 371</p>
<p>17.3. Uniaxial compression strength tests 375</p>
<p>17.4. Three–point bending tests 377</p>
<p>17.5. Multiaxial compression strength tests 378</p>
<p>17.6. Hopkinson bar tests 380</p>
<p>17.7. Penetration through reinforced concrete slabs 382</p>
<p>17.8. Closing remark 384</p>
<p>17.9. Acknowledgments 385</p>
<p>17.10. Bibliography 385</p>
<p>Chapter 18. An Improved Contact Algorithm for Multi–Material Continuum Codes 389<br /> Kenneth C. WALLS and David L. LITTLEFIELD</p>
<p>18.1. Introduction 389</p>
<p>18.2. Background 390</p>
<p>18.3. The contact–impact problem 391</p>
<p>18.4. Formulation 395</p>
<p>18.5. Finite element formulation 398</p>
<p>18.6. Calculations 401</p>
<p>18.7. Discussion 405</p>
<p>18.8. Conclusions 410</p>
<p>18.9. Bibliography 412</p>
<p>Chapter 19. Parallel Computing for Non–linear Concrete Modeling 415<br /> Kent DANIELSON, Mark ADLEY and James O DANIEL</p>
<p>19.1. Introduction 415</p>
<p>19.2. Explicit dynamic finite element analysis 416</p>
<p>19.3. Numerical methodologies 417</p>
<p>19.4. Numerical applications 421</p>
<p>19.5. Concluding remarks 429</p>
<p>19.6. Acknowledgments 430</p>
<p>19.7. Bibliography 431</p>
<p>List of Authors 433</p>
<p>Index 439</p>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Materials under Extreme Loadings – Application to Penetration and Impact