Basic Stochastic Processes

Specificaties
Gebonden, 326 blz. | Engels
John Wiley & Sons | e druk, 2015
ISBN13: 9781848218826
Rubricering
Juridisch :
John Wiley & Sons e druk, 2015 9781848218826
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book presents basic stochastic processes, stochastic calculus including Lévy processes on one hand, and Markov and Semi Markov models on the other. From the financial point of view, essential concepts such as the Black and Scholes model, VaR indicators, actuarial evaluation, market values, fair pricing play a central role and will be presented.

The authors also present basic concepts so that this series is relatively self–contained for the main audience formed by actuaries and particularly with ERM (enterprise risk management) certificates, insurance risk managers, students in Master in mathematics or economics and people involved in Solvency II for insurance companies and in Basel II and III for banks.

Specificaties

ISBN13:9781848218826
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:326

Inhoudsopgave

<p>INTRODUCTION&nbsp; xi</p>
<p>CHAPTER 1. BASIC PROBABILISTIC TOOLS FOR STOCHASTIC MODELING 1</p>
<p>1.1. Probability space and random variables 1</p>
<p>1.2. Expectation and independence 4</p>
<p>1.3. Main distribution probabilities 7</p>
<p>1.3.1. Binomial distribution 7</p>
<p>1.3.2. Negative exponential distribution 8</p>
<p>1.3.3. Normal (or Laplace Gauss) distribution 8</p>
<p>1.3.4. Poisson distribution 11</p>
<p>1.3.5. Lognormal distribution 11</p>
<p>1.3.6. Gamma distribution 12</p>
<p>1.3.7. Pareto distribution 13</p>
<p>1.3.8. Uniform distribution 16</p>
<p>1.3.9. Gumbel distribution 16</p>
<p>1.3.10. Weibull distribution 16</p>
<p>1.3.11. Multi–dimensional normal distribution 17</p>
<p>1.3.12. Extreme value distribution 19</p>
<p>1.4. The normal power (NP) approximation&nbsp;28</p>
<p>1.5. Conditioning&nbsp;31</p>
<p>1.6. Stochastic processes&nbsp;39</p>
<p>1.7. Martingales 43</p>
<p>CHAPTER 2. HOMOGENEOUS AND NON–HOMOGENEOUS RENEWAL MODELS 47</p>
<p>2.1. Introduction 47</p>
<p>2.2. Continuous time non–homogeneous convolutions&nbsp;49</p>
<p>2.2.1. Non–homogeneous convolution product 49</p>
<p>2.3. Homogeneous and non–homogeneous renewal processes&nbsp;53</p>
<p>2.4. Counting processes and renewal functions&nbsp;56</p>
<p>2.5. Asymptotical results in the homogeneous case&nbsp;61</p>
<p>2.6. Recurrence times in the homogeneous case&nbsp;63</p>
<p>2.7. Particular case: the Poisson process&nbsp;66</p>
<p>2.7.1. Homogeneous case&nbsp;66</p>
<p>2.7.2. Non–homogeneous case 68</p>
<p>2.8. Homogeneous alternating renewal processes 69</p>
<p>2.9. Solution of non–homogeneous discrete timevevolution equation 71</p>
<p>2.9.1. General method&nbsp;71</p>
<p>2.9.2. Some particular formulas&nbsp;73</p>
<p>2.9.3. Relations between discrete time and continuous time renewal equations&nbsp;74</p>
<p>CHAPTER 3. MARKOV CHAINS&nbsp;77</p>
<p>3.1. Definitions 77</p>
<p>3.2. Homogeneous case&nbsp;78</p>
<p>3.2.1. Basic definitions 78</p>
<p>3.2.2. Markov chain state classification 81</p>
<p>3.2.3. Computation of absorption probabilities 87</p>
<p>3.2.4. Asymptotic behavior 88</p>
<p>3.2.5. Example: a management problem in an insurance company 93</p>
<p>3.3. Non–homogeneous Markov chains 95</p>
<p>3.3.1. Definitions 95</p>
<p>3.3.2. Asymptotical results 98</p>
<p>3.4. Markov reward processes&nbsp;99</p>
<p>3.4.1. Classification and notation 99</p>
<p>3.5. Discrete time Markov reward processes (DTMRWPs)&nbsp;102</p>
<p>3.5.1. Undiscounted case&nbsp;102</p>
<p>3.5.2. Discounted case 105</p>
<p>3.6. General algorithms for the DTMRWP 111</p>
<p>3.6.1. Homogeneous MRWP&nbsp;112</p>
<p>3.6.2. Non–homogeneous MRWP 112</p>
<p>CHAPTER 4. HOMOGENEOUS AND NON–HOMOGENEOUS SEMI–MARKOV MODELS 113</p>
<p>4.1. Continuous time semi–Markov processes 113</p>
<p>4.2. The embedded Markov chain 117</p>
<p>4.3. The counting processes and the associated semi–Markov process 118</p>
<p>4.4. Initial backward recurrence times&nbsp;120</p>
<p>4.5. Particular cases of MRP 122</p>
<p>4.5.1. Renewal processes and Markov chains&nbsp;122</p>
<p>4.5.2. MRP of zero–order (PYKE (1962)) 122</p>
<p>4.5.3. Continuous Markov processes 124</p>
<p>4.6. Examples&nbsp;124</p>
<p>4.7. Discrete time homogeneous and non–homogeneous semi–Markov processes 127</p>
<p>4.8. Semi–Markov backward processes in discrete time 129</p>
<p>4.8.1. Definition in the homogeneous case&nbsp;129</p>
<p>4.8.2. Semi–Markov backward processes in discrete time for the non–homogeneous case 130</p>
<p>4.8.3. DTSMP numerical solutions&nbsp;133</p>
<p>4.9. Discrete time reward processes 137</p>
<p>4.9.1. Undiscounted SMRWP 137</p>
<p>4.9.2. Discounted SMRWP 141</p>
<p>4.9.3. General algorithms for DTSMRWP&nbsp;144</p>
<p>4.10. Markov renewal functions in the homogeneous case&nbsp;146</p>
<p>4.10.1. Entrance times 146</p>
<p>4.10.2. The Markov renewal equation&nbsp;150</p>
<p>4.10.3. Asymptotic behavior of an MRP 151</p>
<p>4.10.4. Asymptotic behavior of SMP 153</p>
<p>4.11. Markov renewal equations for the non–homogeneous case&nbsp;158</p>
<p>4.11.1. Entrance time&nbsp;158</p>
<p>4.11.2. The Markov renewal equation 162</p>
<p>CHAPTER 5. STOCHASTIC CALCULUS&nbsp; 165</p>
<p>5.1. Brownian motion 165</p>
<p>5.2. General definition of the stochastic integral&nbsp;167</p>
<p>5.2.1. Problem of stochastic integration 167</p>
<p>5.2.2. Stochastic integration of simple predictable processes and semi–martingales 168</p>
<p>5.2.3. General definition of the stochastic integral 170</p>
<p>5.3. It&ocirc; s formula&nbsp;177</p>
<p>5.3.1. Quadratic variation of a semi–martingale 177</p>
<p>5.3.2. It&ocirc; s formula&nbsp;179</p>
<p>5.4. Stochastic integral with standard Brownian motion as an integrator process&nbsp;180</p>
<p>5.4.1. Case of simple predictable processes 181</p>
<p>5.4.2. Extension to general integrator processes 183</p>
<p>5.5. Stochastic differentiation 184</p>
<p>5.5.1. Stochastic differential&nbsp;184</p>
<p>5.5.2. Particular cases&nbsp;184</p>
<p>5.5.3. Other forms of It&ocirc; s formula&nbsp;185</p>
<p>5.6. Stochastic differential equations 191</p>
<p>5.6.1. Existence and unicity general theorem 191</p>
<p>5.6.2. Solution of stochastic differential equations 195</p>
<p>5.6.3. Diffusion processes&nbsp;199</p>
<p>5.7. Multidimensional diffusion processes 202</p>
<p>5.7.1. Definition of multidimensional It&ocirc; and diffusion processes 203</p>
<p>5.7.2. Properties of multidimensional diffusion processes&nbsp;203</p>
<p>5.7.3. Kolmogorov equations&nbsp;205</p>
<p>5.7.4. The Stroock Varadhan martingale characterization of diffusion processes&nbsp;208</p>
<p>5.8. Relation between the resolution of PDE and SDE problems. The Feynman Kac formula&nbsp;209</p>
<p>5.8.1. Terminal payoff&nbsp;209</p>
<p>5.8.2. Discounted payoff function 210</p>
<p>5.8.3. Discounted payoff function and payoff rate 210</p>
<p>5.9. Application to option theory 213</p>
<p>5.9.1. Options 213</p>
<p>5.9.2. Black and Scholes model 216</p>
<p>5.9.3. The Black and Scholes partial differential equation (BSPDE) and the BS formula&nbsp;216</p>
<p>5.9.4. Girsanov theorem 219</p>
<p>5.9.5. The risk–neutral measure and the martingale property 221</p>
<p>5.9.6. The risk–neutral measure and the evaluation of derivative products&nbsp;224</p>
<p>CHAPTER 6. L&Eacute;VY PROCESSES 227</p>
<p>6.1. Notion of characteristic functions&nbsp;227</p>
<p>6.2. L&eacute;vy processes 228</p>
<p>6.3. L&eacute;vy Khintchine formula&nbsp;230</p>
<p>6.4. Subordinators&nbsp;234</p>
<p>6.5. Poisson measure for jumps 234</p>
<p>6.5.1. The Poisson random measure&nbsp;234</p>
<p>6.5.2. The compensated Poisson process 235</p>
<p>6.5.3. Jump measure of a L&eacute;vy process 236</p>
<p>6.5.4. The It&ocirc; L&eacute;vy decomposition&nbsp;236</p>
<p>6.6. Markov and martingale properties of L&eacute;vy processes&nbsp;237</p>
<p>6.6.1. Markov property 237</p>
<p>6.6.2. Martingale properties&nbsp;239</p>
<p>6.6.3. It&ocirc; formula 240</p>
<p>6.7. Examples of L&eacute;vy processes 240</p>
<p>6.7.1. The lognormal process: Black and Scholes process 240</p>
<p>6.7.2. The Poisson process 241</p>
<p>6.7.3. Compensated Poisson process 242</p>
<p>6.7.4. The compound Poisson process&nbsp;242</p>
<p>6.8. Variance gamma (VG) process 244</p>
<p>6.8.1. The gamma distribution 244</p>
<p>6.8.2. The VG distribution 245</p>
<p>6.8.3. The VG process&nbsp;246</p>
<p>6.8.4. The Esscher transformation 247</p>
<p>6.8.5. The Carr Madan formula for the European call 249</p>
<p>6.9. Hyperbolic L&eacute;vy processes 250</p>
<p>6.10. The Esscher transformation&nbsp;252</p>
<p>6.10.1. Definition 252</p>
<p>6.10.2. Option theory with hyperbolic L&eacute;vy processes 253</p>
<p>6.10.3. Value of the European option call&nbsp;255</p>
<p>6.11. The Brownian Poisson model with jumps&nbsp;256</p>
<p>6.11.1. Mixed arithmetic Brownian Poisson and geometric Brownian Poisson processes 256</p>
<p>6.11.2. Merton model with jumps 258</p>
<p>6.11.3. Stochastic differential equation (SDE) for mixed arithmetic Brownian Poisson and geometric Brownian Poisson processes 261</p>
<p>6.11.4. Value of a European call for the lognormal Merton model 264</p>
<p>6.12. Complete and incomplete markets&nbsp;264</p>
<p>6.13. Conclusion&nbsp;265</p>
<p>CHAPTER 7. ACTUARIAL EVALUATION, VAR AND STOCHASTIC INTEREST RATE MODELS 267</p>
<p>7.1. VaR technique 267</p>
<p>7.2. Conditional VaR value 271</p>
<p>7.3. Solvency II 276</p>
<p>7.3.1. The SCR indicator&nbsp;276</p>
<p>7.3.2. Calculation of MCR 278</p>
<p>7.3.3. ORSA approach&nbsp;279</p>
<p>7.4. Fair value&nbsp;280</p>
<p>7.4.1. Definition 280</p>
<p>7.4.2. Market value of financial flows&nbsp;281</p>
<p>7.4.3. Yield curve 281</p>
<p>7.4.4. Yield to maturity for a financial investment and a bond 283</p>
<p>7.5. Dynamic stochastic time continuous time model for instantaneous interest rate 284</p>
<p>7.5.1. Instantaneous deterministic interest rate 284</p>
<p>7.5.2. Yield curve associated with a deterministic instantaneous interest rate&nbsp;285</p>
<p>7.5.3. Dynamic stochastic continuous time model for instantaneous interest rate&nbsp;286</p>
<p>7.5.4. The OUV stochastic model 287</p>
<p>7.5.5. The CIR model&nbsp;289</p>
<p>7.6. Zero–coupon pricing under the assumption of no arbitrage 292</p>
<p>7.6.1. Stochastic dynamics of zero–coupons 292</p>
<p>7.6.2. The CIR process as rate dynamic 295</p>
<p>7.7. Market evaluation of financial flows&nbsp;298</p>
<p>BIBLIOGRAPHY 301</p>
<p>INDEX 309</p>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Basic Stochastic Processes