Quantum Communications in New Telecommunications Systems

Specificaties
Gebonden, 206 blz. | Engels
John Wiley & Sons | e druk, 2017
ISBN13: 9781848219908
Rubricering
Juridisch :
John Wiley & Sons e druk, 2017 9781848219908
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book addresses quantum communications in the light of new technological developments on photonic crystals and their potential applications in systems. Mathematical and physical aspects of quantum optical fibers and photonic crystals are considered in order to optimize the quantum transmissions. Two fundamentals elements are treated, reconfigurable optical add–drop multiplexer and WDM.

Specificaties

ISBN13:9781848219908
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:206

Inhoudsopgave

<p>Foreword ix</p>
<p>Preface&nbsp; xi</p>
<p>Introduction xiii</p>
<p>Chapter 1. The State of the Art in Quantum Communications 1</p>
<p>1.1. Quantum mechanics as a generalized probability theory&nbsp; 1</p>
<p>1.2. Contextuality&nbsp; 3</p>
<p>1.3. Indeterminism and contextuality 3</p>
<p>1.4. Contextuality and hidden variables&nbsp; 4</p>
<p>1.5. Non–locality and contextuality&nbsp; 5</p>
<p>1.6. Bell states&nbsp; 6</p>
<p>1.7. Violation of the Leggett Garg inequality&nbsp; 7</p>
<p>1.8. Violation of the Bell inequality&nbsp; 8</p>
<p>1.9. EPR paradox&nbsp; 8</p>
<p>Chapter 2. Concepts in Communications&nbsp; 13</p>
<p>2.1. Quantum limits 13</p>
<p>2.2. Qubits&nbsp; 15</p>
<p>2.3. Qudit and qutrit&nbsp; 20</p>
<p>2.3.1. Qudit&nbsp; 20</p>
<p>2.3.2. Qutrit&nbsp; 23</p>
<p>2.4. Pauli matrices 24</p>
<p>2.4.1. Definition 24</p>
<p>2.4.2. Properties of these matrices 25</p>
<p>2.5. Decoherence&nbsp; 26</p>
<p>2.6. Entanglement&nbsp; 28</p>
<p>Chapter 3. Quantum Signal Processing&nbsp; 31</p>
<p>3.1. Wigner distribution&nbsp; 32</p>
<p>3.2. Quantum Fourier transform&nbsp; 34</p>
<p>3.3. Gauss sums in a quantum context&nbsp; 36</p>
<p>3.4. Geometry for quantum processing&nbsp; 37</p>
<p>Chapter 4. Quantum Circuits&nbsp; 41</p>
<p>4.1. Reversible logic&nbsp; 41</p>
<p>4.1.1. Physical reversibility 41</p>
<p>4.2. Reversible circuits 42</p>
<p>4.2.1. Reversible calculation models&nbsp; 42</p>
<p>4.2.2. Reversibility in quantum calculation&nbsp; 43</p>
<p>4.3. Quantum gates 44</p>
<p>4.3.1. Hadamard gate&nbsp; 44</p>
<p>4.3.2. Pauli–X gate&nbsp; 45</p>
<p>4.3.3. Pauli–Y gate&nbsp; 45</p>
<p>4.3.4. Pauli–Z gate&nbsp; 46</p>
<p>4.3.5. Swap gate 46</p>
<p>4.4. Toffoli gate 47</p>
<p>4.5. Deutsch gate&nbsp; 48</p>
<p>4.6. Quantum dots 49</p>
<p>4.7. QCA&nbsp; 52</p>
<p>Chapter 5. Optical Fibers and Solitons&nbsp; 53</p>
<p>5.1. Introduction&nbsp; 53</p>
<p>5.2. Optical fibers&nbsp; 54</p>
<p>5.2.1. The fiber s parameters&nbsp; 55</p>
<p>5.2.2. Birefringence in optical fibers&nbsp; 58</p>
<p>5.2.3. Dispersion in optical fibers&nbsp; 58</p>
<p>5.3. Soliton solutions for differential equations 60</p>
<p>5.3.1. Introduction&nbsp; 60</p>
<p>5.3.2. Nonlinear Schrodinger equation 61</p>
<p>5.3.3. Focusing soliton oscillations 63</p>
<p>5.3.4. Wave packet autostriction (modulation instability) 65</p>
<p>5.3.5. Evolution of the initial disturbance 69</p>
<p>5.4. Conclusion 73</p>
<p>Chapter 6. Photonic Crystals&nbsp; 75</p>
<p>6.1. General introduction&nbsp; 75</p>
<p>6.2. Photonic crystals&nbsp; 76</p>
<p>6.2.1. Photonic crystals with one dimension (Bragg network) 77</p>
<p>6.2.2. Band diagram 80</p>
<p>6.2.3. Maps of forbidden bands 81</p>
<p>6.3. Three–dimensional photonic crystals 82</p>
<p>6.4. Filters and multiplexors&nbsp; 82</p>
<p>6.5. Add–drop filters&nbsp; 83</p>
<p>6.6. Digital methods for photonic crystal analysis&nbsp; 84</p>
<p>6.6.1. Introduction&nbsp; 84</p>
<p>6.6.2. Modeling periodic dielectric structures 85</p>
<p>6.6.3. FDTD method 85</p>
<p>6.6.4. Available digital tools&nbsp; 86</p>
<p>6.7. Conclusion 88</p>
<p>Chapter 7. ROADM 89</p>
<p>7.1. Technological advances&nbsp; 89</p>
<p>7.2. Router –type filter&nbsp; 90</p>
<p>Chapter 8. WDM&nbsp; 95</p>
<p>8.1. Operating principle&nbsp; 95</p>
<p>8.2. Using WDM systems 96</p>
<p>8.3. DWDM networks 98</p>
<p>Chapter 9. Quantum Algorithms&nbsp; 99</p>
<p>Chapter 10. Applications 101</p>
<p>10.1. Laser satellites&nbsp; 101</p>
<p>10.1.1. The Doppler effect in inter–satellite laser communications&nbsp; 102</p>
<p>10.1.2. Modeling the Doppler effect in inter–satellite laser communications&nbsp; 103</p>
<p>10.1.3. Calculation software 108</p>
<p>10.1.4. Calculation software 108</p>
<p>Chapter 11. Quantum Cryptography&nbsp; 121</p>
<p>11.1. Cloning photons 123</p>
<p>11.2. Quantum cryptography 123</p>
<p>11.2.1. Introduction 123</p>
<p>11.2.2. Methodology 124</p>
<p>11.2.3. Results and discussion 126</p>
<p>11.2.4. Conclusion&nbsp; 129</p>
<p>11.3. Solutions to the practical limits of quantum cryptography 130</p>
<p>11.3.1. Introduction 130</p>
<p>11.3.2. Theoretical considerations 130</p>
<p>11.3.3. Practical considerations 131</p>
<p>11.3.4. Quantum noise&nbsp; 132</p>
<p>11.3.5. The QBER in quantum transmissions 133</p>
<p>11.3.6. Error correction methods in quantum cryptography 138</p>
<p>11.3.7. The correcting code for error correction in BB84&nbsp; 140</p>
<p>11.3.8. Time coding for error correction in BB84 142</p>
<p>11.3.9. Conclusion&nbsp; 144</p>
<p>11.4. Quantum error correcting codes 145</p>
<p>11.4.1. Introduction 145</p>
<p>11.4.2. Classical error correcting code 145</p>
<p>11.4.3. Quantum error correcting code 148</p>
<p>11.4.4. The time coding method for error correction: application in BB84 157</p>
<p>11.4.5. Correction of time code errors using the repetition method&nbsp; 158</p>
<p>11.4.6. Conclusion&nbsp; 161</p>
<p>Conclusion 163</p>
<p>Bibliography 167</p>
<p>Index 179</p>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Quantum Communications in New Telecommunications Systems