Support Vector Machines for Pattern Classification

Specificaties
Gebonden, 473 blz. | Engels
Springer London | 2e druk, 2010
ISBN13: 9781849960977
Rubricering
Juridisch :
Springer London 2e druk, 2010 9781849960977
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

Specificaties

ISBN13:9781849960977
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:473
Uitgever:Springer London
Druk:2

Inhoudsopgave

Introduction
Two-Class Support Vector Machines
Multiclass Support Vector Machines
Variants of Support Vector Machines
Training Methods
Kernel-Based Methods
Feature Selection and Extraction
Clustering
Maximum-Margin Multilayer Neural Networks
Maximum-Margin Fuzzy Classifiers
Function Approximation.

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Support Vector Machines for Pattern Classification