

Molecular Fluorescence 2e – Principles and Applications
Principles and Applications
Samenvatting
This second edition of the well–established bestseller is completely updated and revised with approximately 30 % additional material, including two new chapters on applications, which has seen the most significant developments.
The comprehensive overview written at an introductory level covers fundamental aspects, principles of instrumentation and practical applications, while providing many valuable tips.
For photochemists and photophysicists, physical chemists, molecular physicists, biophysicists, biochemists and biologists, lecturers and students of chemistry, physics, and biology.
Specificaties
Inhoudsopgave
<p>Preface to the Second Edition XVII</p>
<p>Acknowledgments XIX</p>
<p>Prologue XXI</p>
<p>1 Introduction 1</p>
<p>1.1 What Is Luminescence? 1</p>
<p>1.2 A Brief History of Fluorescence and Phosphorescence 2</p>
<p>1.2.1 Early Observations 3</p>
<p>1.2.2 On the Distinction between Fluorescence and Phosphorescence: Decay Time Measurements 10</p>
<p>1.2.3 The Perrin Jablonski Diagram 12</p>
<p>1.2.4 Fluorescence Polarization 14</p>
<p>1.2.5 Resonance Energy Transfer 16</p>
<p>1.2.6 Early Applications of Fluorescence 17</p>
<p>1.3 Photoluminescence of Organic and Inorganic Species: Fluorescence or Phosphorescence? 19</p>
<p>1.4 Various De–Excitation Processes of Excited Molecules 20</p>
<p>1.5 Fluorescent Probes, Indicators, Labels, and Tracers 21</p>
<p>1.6 Ultimate Temporal and Spatial Resolution: Femtoseconds, Femtoliters, Femtomoles, and Single–Molecule Detection 23</p>
<p>General Bibliography: Monographs and Books 25</p>
<p>Part I Principles 31</p>
<p>2 Absorption of Ultraviolet, Visible, and Near–Infrared Radiation 33</p>
<p>2.1 Electronic Transitions 33</p>
<p>2.2 Transition Probabilities: The Beer Lambert Law, Oscillator Strength 39</p>
<p>2.3 Selection Rules 46</p>
<p>2.4 The Franck Condon Principle 47</p>
<p>2.5 Multiphoton Absorption and Harmonic Generation 49</p>
<p>Bibliography 51</p>
<p>3 Characteristics of Fluorescence Emission 53</p>
<p>3.1 Radiative and Nonradiative Transitions between Electronic States 53</p>
<p>3.1.1 Internal Conversion 56</p>
<p>3.1.2 Fluorescence 56</p>
<p>3.1.3 Intersystem Crossing and Subsequent Processes 57</p>
<p>3.1.3.1 Intersystem Crossing 58</p>
<p>3.1.3.2 Phosphorescence versus Nonradiative De–Excitation 60</p>
<p>3.1.3.3 Delayed Fluorescence 60</p>
<p>3.1.3.4 Triplet Triplet Transitions 61</p>
<p>3.2 Lifetimes and Quantum Yields 61</p>
<p>3.2.1 Excited–State Lifetimes 61</p>
<p>3.2.2 Quantum Yields 64</p>
<p>3.2.3 Effect of Temperature 66</p>
<p>3.3 Emission and Excitation Spectra 67</p>
<p>3.3.1 Steady–State Fluorescence Intensity 67</p>
<p>3.3.2 Emission Spectra 68</p>
<p>3.3.3 Excitation Spectra 71</p>
<p>3.3.4 Stokes Shift 72</p>
<p>Bibliography 74</p>
<p>4 Structural Effects on Fluorescence Emission 75</p>
<p>4.1 Effects of the Molecular Structure of Organic Molecules on Their Fluorescence 75</p>
<p>4.1.1 Extent of the –Electron System: Nature of the Lowest–Lying Transition 75</p>
<p>4.1.2 Substituted Aromatic Hydrocarbons 77</p>
<p>4.1.2.1 Internal Heavy Atom Effect 77</p>
<p>4.1.2.2 Electron–Donating Substituents: OH, OR, NH2, NHR, NR2 78</p>
<p>4.1.2.3 Electron–Withdrawing Substituents: Carbonyl and Nitro Compounds 78</p>
<p>4.1.2.4 Sulfonates 79</p>
<p>4.1.3 Heterocyclic Compounds 80</p>
<p>4.1.3.1 Compounds with Heteronitrogen Atoms 80</p>
<p>4.1.3.2 Coumarins 81</p>
<p>4.1.3.3 Xanthenic Dyes 82</p>
<p>4.1.3.4 Oxazines 84</p>
<p>4.1.3.5 Cyanines 85</p>
<p>4.1.3.6 BODIPY Fluorophores 86</p>
<p>4.1.4 Compounds Undergoing Photoinduced ICT and Internal Rotation 87</p>
<p>4.2 Fluorescence of Conjugated Polymers (CPs) 92</p>
<p>4.3 Luminescence of Carbon Nanostructures: Fullerenes, Nanotubes, and Carbon Dots 93</p>
<p>4.4 Luminescence of Metal Compounds, Metal Complexes, and Metal Clusters 96</p>
<p>4.5 Luminescence of Semiconductor Nanocrystals (Quantum Dots and Quantum Rods) 103</p>
<p>Bibliography 105</p>
<p>5 Environmental Effects on Fluorescence Emission 109</p>
<p>5.1 Homogeneous and Inhomogeneous Band Broadening Red–Edge Effects 109</p>
<p>5.2 General Considerations on Solvent Effects 110</p>
<p>5.3 Solvent Relaxation Subsequent to Photoinduced Charge Transfer (PCT) 112</p>
<p>5.4 Theory of Solvatochromic Shifts 117</p>
<p>5.5 Effects of Specifi c Interactions 119</p>
<p>5.5.1 Effects of Hydrogen Bonding on Absorption and Fluorescence Spectra 119</p>
<p>5.5.2 Examples of Effects of Specifi c Interactions 120</p>
<p>5.5.3 Polarity–Induced Inversion of n ∗ and ∗ States 123</p>
<p>5.6 Empirical Scales of Solvent Polarity 124</p>
<p>5.6.1 Scales Based on Solvatochromic Shifts 124</p>
<p>5.6.1.1 Single–Parameter Approach 124</p>
<p>5.6.1.2 Multiparameter Approach 126</p>
<p>5.6.2 Scale Based on Polarity–Induced Changes in Vibronic Bands (Py Scale) 129</p>
<p>5.7 Viscosity Effects 129</p>
<p>5.7.1 What is Viscosity? Significance at a Microscopic Level 129</p>
<p>5.7.2 Viscosity Effect on the Fluorescence of Molecules Undergoing Internal Rotations 132</p>
<p>5.8 Fluorescence in Solid Matrices at Low Temperature 135</p>
<p>5.8.1 Shpol skii Spectroscopy 136</p>
<p>5.8.2 Matrix Isolation Spectroscopy 137</p>
<p>5.8.3 Site–Selection Spectroscopy 137</p>
<p>5.9 Fluorescence in Gas Phase: Supersonic Jets 137</p>
<p>Bibliography 138</p>
<p>6 Effects of Intermolecular Photophysical Processes on Fluorescence Emission 141</p>
<p>6.1 Introduction 141</p>
<p>6.2 Overview of the Intermolecular De–Excitation Processes of Excited Molecules Leading to Fluorescence Quenching 143</p>
<p>6.2.1 Phenomenological Approach 143</p>
<p>6.2.2 Dynamic Quenching 146</p>
<p>6.2.2.1 Stern Volmer Kinetics 146</p>
<p>6.2.2.2 Transient Effects 148</p>
<p>6.2.3 Static Quenching 152</p>
<p>6.2.3.1 Sphere of Effective Quenching 152</p>
<p>6.2.3.2 Formation of a Ground–State Nonfluorescent Complex 153</p>
<p>6.2.4 Simultaneous Dynamic and Static Quenching 154</p>
<p>6.2.5 Quenching of Heterogeneously Emitting Systems 158</p>
<p>6.3 Photoinduced Electron Transfer 159</p>
<p>6.4 Formation of Excimers and Exciplexes 162</p>
<p>6.4.1 Excimers 163</p>
<p>6.4.2 Exciplexes 167</p>
<p>6.5 Photoinduced Proton Transfer 168</p>
<p>6.5.1 General Equations for Deprotonation in the Excited State 170</p>
<p>6.5.2 Determination of the Excited–State pK∗ 172</p>
<p>6.5.2.1 Prediction by Means of the Förster Cycle 172</p>
<p>6.5.2.2 Steady–State Measurements 173</p>
<p>6.5.2.3 Time–Resolved Experiments 174</p>
<p>6.5.3 pH Dependence of Absorption and Emission Spectra 174</p>
<p>6.5.4 Equations for Bases Undergoing Protonation in the Excited State 178</p>
<p>Bibliography 179</p>
<p>7 Fluorescence Polarization: Emission Anisotropy 181</p>
<p>7.1 Polarized Light and Photoselection of Absorbing Molecules 181</p>
<p>7.2 Characterization of the Polarization State of Fluorescence (Polarization Ratio and Emission Anisotropy) 184</p>
<p>7.2.1 Excitation by Polarized Light 184</p>
<p>7.2.1.1 Vertically Polarized Excitation 184</p>
<p>7.2.1.2 Horizontally Polarized Excitation 186</p>
<p>7.2.2 Excitation by Natural Light 187</p>
<p>7.3 Instantaneous and Steady–State Anisotropy 187</p>
<p>7.3.1 Instantaneous Anisotropy 187</p>
<p>7.3.2 Steady–State Anisotropy 188</p>
<p>7.4 Additivity Law of Anisotropy 188</p>
<p>7.5 Relation between Emission Anisotropy and Angular Distribution of the Emission Transition Moments 190</p>
<p>7.6 Case of Motionless Molecules with Random Orientation 191</p>
<p>7.6.1 Parallel Absorption and Emission Transition Moments 191</p>
<p>7.6.2 Nonparallel Absorption and Emission Transition Moments 192</p>
<p>7.6.3 Multiphoton Excitation 196</p>
<p>7.7 Effect of Rotational Motion 199</p>
<p>7.7.1 Free Rotations 200</p>
<p>7.7.1.1 General Equations 200</p>
<p>7.7.1.2 Isotropic Rotations 201</p>
<p>7.7.1.3 Anisotropic Rotations 203</p>
<p>7.7.2 Hindered Rotations 206</p>
<p>7.8 Applications 207</p>
<p>Bibliography 210</p>
<p>8 Excitation Energy Transfer 213</p>
<p>8.1 Introduction 213</p>
<p>8.2 Distinction between Radiative and Nonradiative Transfer 218</p>
<p>8.3 Radiative Energy Transfer 219</p>
<p>8.4 Nonradiative Energy Transfer 221</p>
<p>8.4.1 Interactions Involved in Nonradiative Energy Transfer 221</p>
<p>8.4.2 The Three Main Classes of Coupling 224</p>
<p>8.4.3 Förster s Formulation of Long–Range Dipole Dipole Transfer (Very Weak Coupling) 226</p>
<p>8.4.4 Dexter s Formulation of Exchange Energy Transfer (Very Weak Coupling) 233</p>
<p>8.4.5 Selection Rules 233</p>
<p>8.5 Determination of Distances at a Supramolecular Level Using FRET 235</p>
<p>8.5.1 Single Distance between the Donor and the Acceptor 235</p>
<p>8.5.2 Distributions of Distances in Donor Acceptor Pairs 239</p>
<p>8.5.3 Single Molecule Studies 242</p>
<p>8.5.4 On the Validity of Förster s Theory for the Estimation of Distances 242</p>
<p>8.6 FRET in Ensembles of Donors and Acceptors 243</p>
<p>8.6.1 FRET in Three Dimensions: Effect of Viscosity 243</p>
<p>8.6.2 Effects of Dimensionality on FRET 247</p>
<p>8.6.3 Effects of Restricted Geometries on FRET 250</p>
<p>8.7 FRET between Like Molecules: Excitation Energy Migration in Assemblies of Chromophores 250</p>
<p>8.7.1 FRET within a Pair of Like Chromophores 251</p>
<p>8.7.2 FRET in Assemblies of Like Chromophores 251</p>
<p>8.7.3 Lack of Energy Transfer upon Excitation at the Red Edge of the Absorption Spectrum (Weber s Red–Edge Effect) 252</p>
<p>8.8 Overview of Qualitative and Quantitative Applications of FRET 252</p>
<p>Bibliography 258</p>
<p>Part II Techniques 263</p>
<p>9 Steady–State Spectrofl uorometry 265</p>
<p>9.1 Operating Principles of a Spectrofl uorometer 265</p>
<p>9.2 Correction of Excitation Spectra 268</p>
<p>9.3 Correction of Emission Spectra 268</p>
<p>9.4 Measurement of Fluorescence Quantum Yields 269</p>
<p>9.5 Possible Artifacts in Spectrofl uorometry 271</p>
<p>9.5.1 Inner Filter Effects 271</p>
<p>9.5.1.1 Excitation Inner Filter Effect 271</p>
<p>9.5.1.2 Emission Inner Filter Effect (Self–Absorption) 272</p>
<p>9.5.1.3 Inner Filter Effects due to the Presence of Other Substances 274</p>
<p>9.5.2 Autofl uorescence 274</p>
<p>9.5.3 Polarization Effects 275</p>
<p>9.5.4 Effect of Oxygen 275</p>
<p>9.5.5 Photobleaching Effect 276</p>
<p>9.6 Measurement of Steady–State Emission Anisotropy: Polarization Spectra 277</p>
<p>9.6.1 Principles of Measurement 277</p>
<p>9.6.2 Possible Artifacts 279</p>
<p>9.6.3 Tests Prior to Fluorescence Polarization Measurements 279</p>
<p>Appendix 9.A Elimination of Polarization Effects in the Measurement of Fluorescence Intensity 281</p>
<p>Bibliography 283</p>
<p>10 Time–Resolved Fluorescence Techniques 285</p>
<p>10.1 Basic Equations of Pulse and Phase–Modulation Fluorimetries 286</p>
<p>10.1.1 Pulse Fluorimetry 286</p>
<p>10.1.2 Phase–Modulation Fluorimetry 286</p>
<p>10.1.3 Relationship between Harmonic Response and –Pulse Response 287</p>
<p>10.1.4 General Relations for Single Exponential and MultiExponential Decays 290</p>
<p>10.2 Pulse Fluorimetry 292</p>
<p>10.2.1 Light Sources 292</p>
<p>10.2.2 Single–Photon Timing Technique (10 ps 500 s) 292</p>
<p>10.2.3 Streak Camera (1 ps 10 ns) 294</p>
<p>10.2.4 Fluorescence Upconversion (0.1 500 ps) 295</p>
<p>10.2.5 Optical Kerr–Gating (0.1 500 ps) 297</p>
<p>10.3 Phase–Modulation Fluorimetry 298</p>
<p>10.3.1 Introduction 298</p>
<p>10.3.2 Phase Fluorimeters Using a Continuous Light Source and an Electro–Optic Modulator 300</p>
<p>10.3.3 Phase Fluorimeters Using the Harmonic Content of a Pulsed Laser 302</p>
<p>10.4 Artifacts in Time–Resolved Fluorimetry 302</p>
<p>10.4.1 Inner Filter Effects 302</p>
<p>10.4.2 Dependence of the Instrument Response on Wavelength Color Effect 304</p>
<p>10.4.3 Polarization Effects 304</p>
<p>10.4.4 Effects of Light Scattering 304</p>
<p>10.5 Data Analysis 305</p>
<p>10.5.1 Pulse Fluorimetry 305</p>
<p>10.5.2 Phase–Modulation Fluorimetry 306</p>
<p>10.5.3 Judging the Quality of the Fit 306</p>
<p>10.5.4 Global Analysis 307</p>
<p>10.5.5 Fluorescence Decays with Underlying Distributions of Decay Times 308</p>
<p>10.6 Lifetime Standards 312</p>
<p>10.7 Time–Resolved Polarization Measurements 314</p>
<p>10.7.1 General Equations for Time–Dependent Anisotropy and Polarized Components 314</p>
<p>10.7.2 Pulse Fluorimetry 315</p>
<p>10.7.3 Phase–Modulation Fluorimetry 317</p>
<p>10.7.4 Reference Compounds for Time–Resolved Fluorescence Anisotropy Measurements 318</p>
<p>10.8 Time–Resolved Fluorescence Spectra 318</p>
<p>10.9 Lifetime–Based Decomposition of Spectra 318</p>
<p>10.10 Comparison between Single–Photon Timing Fluorimetry and Phase–Modulation Fluorimetry 322</p>
<p>Bibliography 323</p>
<p>11 Fluorescence Microscopy 327</p>
<p>11.1 Wide–Field (Conventional), Confocal, and Two–Photon Fluorescence Microscopies 328</p>
<p>11.1.1 Wide–Field (Conventional) Fluorescence Microscopy 328</p>
<p>11.1.2 Confocal Fluorescence Microscopy 329</p>
<p>11.1.3 Two–Photon Excitation Fluorescence Microscopy 331</p>
<p>11.1.4 Fluorescence Polarization Measurements in Microscopy 333</p>
<p>11.2 Super–Resolution (Subdiffraction) Techniques 333</p>
<p>11.2.1 Scanning Near–Field Optical Microscopy (SNOM) 333</p>
<p>11.2.2 Far–Field Techniques 337</p>
<p>11.3 Fluorescence Lifetime Imaging Microscopy (FLIM) 340</p>
<p>11.3.1 Time–Domain FLIM 341</p>
<p>11.3.2 Frequency–Domain FLIM 342</p>
<p>11.4 Applications 342</p>
<p>Bibliography 346</p>
<p>12 Fluorescence Correlation Spectroscopy and Single–Molecule Fluorescence Spectroscopy 349</p>
<p>12.1 Fluorescence Correlation Spectroscopy (FCS) 349</p>
<p>12.1.1 Conceptual Basis and Instrumentation 350</p>
<p>12.1.2 Determination of Translational Diffusion Coefficients 355</p>
<p>12.1.3 Chemical Kinetic Studies 356</p>
<p>12.1.4 Determination of Rotational Diffusion Coefficients 359</p>
<p>12.1.5 Cross–Correlation Methods 360</p>
<p>12.2 Single–Molecule Fluorescence Spectroscopy 360</p>
<p>12.2.1 General Remarks 360</p>
<p>12.2.2 Single–Molecule Detection in Flowing Solutions 361</p>
<p>12.2.3 Single–Molecule Detection Using Fluorescence Microscopy Techniques 363</p>
<p>12.2.4 Single–Molecule and Single–Particle Photophysics 367</p>
<p>12.2.5 Applications and Usefulness of Single–Molecule Fluorescence 371</p>
<p>Bibliography 372</p>
<p>Part III Applications 377</p>
<p>13 Evaluation of Local Physical Parameters by Means of Fluorescent Probes 379</p>
<p>13.1 Fluorescent Probes for Polarity 379</p>
<p>13.1.1 Examples of Photoinduced Charge Transfer (PCT) Probes for Polarity 380</p>
<p>13.1.2 Pyrene and Its Derivatives 384</p>
<p>13.2 Estimation of Microviscosity, Fluidity, and Molecular Mobility 384</p>
<p>13.2.1 Various Methods 385</p>
<p>13.2.2 Use of Molecular Rotors 386</p>
<p>13.2.3 Methods Based on Intermolecular Quenching or Intermolecular Excimer Formation 389</p>
<p>13.2.4 Methods Based on Intramolecular Excimer Formation 390</p>
<p>13.2.5 Fluorescence Polarization Method 393</p>
<p>13.2.5.1 Choice of Probes 393</p>
<p>13.2.5.2 Homogeneous Isotropic Media 393</p>
<p>13.2.5.3 Ordered Systems 395</p>
<p>13.2.5.4 Practical Aspects 395</p>
<p>13.2.6 Concluding Remarks 397</p>
<p>13.3 Temperature 398</p>
<p>13.4 Pressure 402</p>
<p>Bibliography 404</p>
<p>14 Chemical Sensing via Fluorescence 409</p>
<p>14.1 Introduction 409</p>
<p>14.2 Various Approaches of Fluorescence Sensing 410</p>
<p>14.3 Fluorescent pH Indicators 412</p>
<p>14.3.1 Principles 412</p>
<p>14.3.2 The Main Fluorescent pH Indicators 417</p>
<p>14.3.2.1 Coumarins 417</p>
<p>14.3.2.2 Pyranine 417</p>
<p>14.3.2.3 Fluorescein and Its Derivatives 419</p>
<p>14.3.2.4 SNARF and SNAFL 419</p>
<p>14.3.2.5 pH Indicators Based on Photoinduced Electron Transfer (PET) 420</p>
<p>14.4 Design Principles of Fluorescent Molecular Sensors Based on Ion or Molecule Recognition 420</p>
<p>14.4.1 General Aspects 420</p>
<p>14.4.2 Recognition Units and Topology 422</p>
<p>14.4.3 Photophysical Signal Transduction 424</p>
<p>14.4.3.1 Photoinduced Electron Transfer (PET) 424</p>
<p>14.4.3.2 Photoinduced Charge Transfer (PCT) 425</p>
<p>14.4.3.3 Excimer Formation or Disappearance 427</p>
<p>14.4.3.4 Förster Resonance Energy Transfer (FRET) 427</p>
<p>14.5 Fluorescent Molecular Sensors of Metal Ions 427</p>
<p>14.5.1 General Aspects 427</p>
<p>14.5.2 Fluorescent PET Cation Sensors 430</p>
<p>14.5.3 Fluorescent PCT Cation Sensors 430</p>
<p>14.5.4 Excimer–Based Cation Sensors 430</p>
<p>14.5.5 Cation Sensors Based on FRET 430</p>
<p>14.5.6 Hydroxyquinoline–Based Cation Sensors 432</p>
<p>14.5.7 Concluding Remarks on Cation Sensors 435</p>
<p>14.6 Fluorescent Molecular Sensors of Anions 436</p>
<p>14.6.1 Anion Sensors Based on Collisional Quenching 437</p>
<p>14.6.2 Anion Sensors Based on Fluorescence Changes upon Anion Binding 437</p>
<p>14.6.2.1 Urea and Thiourea Groups 438</p>
<p>14.6.2.2 Pyrrole Groups 439</p>
<p>14.6.2.3 Polyazaalkanes 440</p>
<p>14.6.2.4 Imidazolium Groups 443</p>
<p>14.6.2.5 Anion Binding by Metal Ion Complexes 443</p>
<p>14.6.3 Anion Sensors Based on the Displacement of a Competitive Fluorescent Anionic Molecule 444</p>
<p>14.7 Fluorescent Molecular Sensors of Neutral Molecules 445</p>
<p>14.7.1 Cyclodextrin–Based Fluorescent Sensors 446</p>
<p>14.7.2 Boronic Acid–Based Fluorescent Sensors 449</p>
<p>14.7.3 Porphyrin–Based Fluorescent Sensors 452</p>
<p>14.8 Fluorescence Sensing of Gases 453</p>
<p>14.8.1 Oxygen 453</p>
<p>14.8.2 Carbon Dioxide 456</p>
<p>14.8.3 Nitric Oxide 456</p>
<p>14.8.4 Explosives 456</p>
<p>14.9 Sensing Devices 458</p>
<p>14.10 Remote Sensing by Fluorescence LIDAR 460</p>
<p>14.10.1 Vegetation Monitoring 461</p>
<p>14.10.2 Marine Monitoring 462</p>
<p>14.10.3 Historic Monuments 462</p>
<p>Appendix 14.A. Spectrophotometric and Spectrofluorometric pH Titrations 462</p>
<p>Single–Wavelength Measurements 462</p>
<p>Dual–Wavelength Measurements 463</p>
<p>Appendix 14.B. Determination of the Stoichiometry and Stability Constant of Metal Complexes from Spectrophotometric or Spectrofluorometric Titrations 465</p>
<p>Definition of the Equilibrium Constants 465</p>
<p>Preliminary Remarks on Titrations by Spectrophotometry and Spectrofluorometry 467</p>
<p>Formation of a 1 : 1 Complex (Single–Wavelength Measurements) 467</p>
<p>Formation of a 1 : 1 Complex (Dual–Wavelength Measurements) 469</p>
<p>Formation of Successive Complexes ML and M2L 470</p>
<p>Cooperativity 471</p>
<p>Determination of the Stoichiometry of a Complex by the Method of Continuous Variations (Job s Method) 471</p>
<p>Bibliography 473</p>
<p>15 Autofluorescence and Fluorescence Labeling in Biology and Medicine 479</p>
<p>15.1 Introduction 479</p>
<p>15.2 Natural (Intrinsic) Chromophores and Fluorophores 480</p>
<p>15.2.1 Amino Acids and Derivatives 481</p>
<p>15.2.2 Coenzymes 488</p>
<p>15.2.3 Chlorophylls 490</p>
<p>15.3 Fluorescent Proteins (FPs) 491</p>
<p>15.4 Fluorescent Small Molecules 493</p>
<p>15.5 Quantum Dots and Other Luminescent Nanoparticles 497</p>
<p>15.6 Conclusion 501</p>
<p>Bibliography 502</p>
<p>16 Miscellaneous Applications 507</p>
<p>16.1 Fluorescent Whitening Agents 507</p>
<p>16.2 Fluorescent Nondestructive Testing 508</p>
<p>16.3 Food Science 511</p>
<p>16.4 Forensics 513</p>
<p>16.5 Counterfeit Detection 514</p>
<p>16.6 Fluorescence in Art 515</p>
<p>Bibliography 518</p>
<p>Appendix: Characteristics of Fluorescent Organic Compounds 521</p>
<p>Epilogue 551</p>
<p>Index 553</p>
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht