Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors

Specificaties
Paperback, 156 blz. | Engels
Springer Berlin Heidelberg | 2002e druk, 2002
ISBN13: 9783540433200
Rubricering
Juridisch :
Springer Berlin Heidelberg 2002e druk, 2002 9783540433200
Onderdeel van serie Lecture Notes in Mathematics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.

Specificaties

ISBN13:9783540433200
Taal:Engels
Bindwijze:paperback
Aantal pagina's:156
Uitgever:Springer Berlin Heidelberg
Druk:2002

Inhoudsopgave

Introduction.- Vector valued modular forms for the metaplectic group. The Weil representation. Poincaré series and Einstein series. Non-holomorphic Poincaré series of negative weight.- The regularized theta lift. Siegel theta functions. The theta integral. Unfolding against F. Unfolding against theta.- The Fourier theta lift. Lorentzian lattices. Lattices of signature (2,l). Modular forms on orthogonal groups. Borcherds products.- Some Riemann geometry on O(2,l). The invariant Laplacian. Reduction theory and L^p-estimates. Modular forms with zeros and poles on Heegner divisors.- Chern classes of Heegner divisors. A lifting into cohomology. Modular forms with zeros and poles on Heegner divisors II.

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors