,

Algorithmic Number Theory

5th International Symposium, ANTS-V, Sydney, Australia, July 7-12, 2002. Proceedings

Specificaties
Paperback, 522 blz. | Engels
Springer Berlin Heidelberg | 2002e druk, 2002
ISBN13: 9783540438632
Rubricering
Juridisch :
Springer Berlin Heidelberg 2002e druk, 2002 9783540438632
Onderdeel van serie Lecture Notes in Computer Science
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

TheAlgorithmicNumberTheorySymposiabeganin1994atCornellUniversity inIthaca,NewYorktorecognizethegrowingimportanceofalgorithmicwork in the theory of numbers. The subject of the conference is broadly construed toencompassadiversebodyofmathematics,andtocoverboththetheoretical andpracticaladvancesinthe?eld. Theyhavebeenheldeverytwoyearssince: inBordeaux(Universit´eBordeauxI)in1996,Portland(ReedCollege)in1998, Leiden(UniversiteitLeiden)in2000,andthepresentconferencehostedbythe MagmaComputationalAlgebraGroupattheUniversityofSydney. TheconferenceprogramincludedinvitedtalksbyManjulBhargava(Prin- ton),JohnCoates(Cambridge),AntoineJoux(DCSSICryptoLab),BjornP- nen(Berkeley),andTakakazuSatoh(Saitama),aswellas34contributedtalks invariousareasofnumbertheory. Inadditiontothemathematicalprogram,the conferenceincludedaspecialdinnertohonourAlfvanderPoortenofMacquarie University,ontheoccasionofhis60thbirthday. Eachpaperwasreviewedbyatleasttwoexpertsexternaltotheprogram committeeandtheselectionofpaperswasmadeonthebasisoftheserec- mendations. Weexpressourappreciationtothe66expertrefereeswhoprovided reportsonaverytightschedule. Refereeingofthesubmissionfromamemberof theMagmagroupwasorganizedbyJoeBuhler. Theprogramcommitteethanksthegenerousadvicefromorganizersofpre- ousANTSconferences,particularlyJoeBuhler,WiebBosma,HendrikLenstra, andBartdeSmit. TheconferencewasgenerouslysupportedbytheCollegeof ScienceandTechnology,theSchoolofMathematicsandStatistics(bothatthe UniversityofSydney),theAustralianDefenceScienceTechnologyOrganisation, andeSign. April2002 JohnCannon ClausFieker DavidKohel TableofContents InvitedTalks GaussCompositionandGeneralizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ManjulBhargava EllipticCurves—TheCrossroadsofTheoryandComputation. . . . . . . . . . 9 JohnCoates TheWeilandTatePairingsasBuildingBlocks forPublicKeyCryptosystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 AntoineJoux UsingEllipticCurvesofRankOnetowardstheUndecidability ofHilbert’sTenthProblemoverRingsofAlgebraicIntegers. . . . . . . . . . . . . 33 BjornPoonen Onp-adicPointCountingAlgorithmsforEllipticCurves overFiniteFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 TakakazuSatoh NumberTheory OnArithmeticallyEquivalentNumberFieldsofSmallDegree . . . . . . . . . . . 67 WiebBosma,BartdeSmit ASurveyofDiscriminantCounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 HenriCohen,FranciscoDiazyDiaz,MichelOlivier AHigher-RankMersenneProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 GrahamEverest,PeterRogers,ThomasWard AnApplicationofSiegelModularFunctions toKronecker’sLimitFormula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 TakashiFukuda,KeiichiKomatsu ComputationalAspectsofNUCOMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 MichaelJ. Jacobson,Jr. ,AlfredJ. vanderPoorten E?cientComputationofClassNumbersofRealAbelianNumberFields. . 134 St´ephaneR. Louboutin AnAcceleratedBuchmannAlgorithmforRegulatorComputation inRealQuadraticFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 UlrichVollmer VIII TableofContents ArithmeticGeometry SomeGenus3CurveswithManyPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 RolandAuer,JaapTop 7 8 Trinomialsax +bx+candax +bx+c withGaloisGroupsofOrder168and8·168. . . . . . . . . . . . . . . . . . . . . . . . . . . 172 NilsBruin,NoamD. Elkies ComputationsonModularJacobianSurfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 189 EnriqueGonz´alez-Jim´enez,JosepGonz´alez,JordiGu`ardia IntegralPointsonPuncturedAbelianSurfaces. . . . . . . . . . . . . . . . . . . . . . . . . 198 AndrewKresch,YuriTschinkel Genus2Curveswith(3,3)-SplitJacobian andLargeAutomorphismGroup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 TonyShaska TransportableModularSymbolsandtheIntersectionPairing. . . . . . . . . . . . 219 HelenaA. Verrill EllipticCurvesandCM ActionofModularCorrespondencesaroundCMPoints. . . . . . . . . . . . . . . . . 234 Jean-MarcCouveignes,ThierryHenocq 2 3 CurvesDy =x ?xofOddAnalyticRank. . . . . . . . . . . . . . . . . . . . . . . . . . . 244 NoamD. Elkies ComparingInvariantsforClassFieldsofImaginaryQuadraticFields. . . . . 252 AndreasEnge,Fran¸coisMorain ADatabaseofEllipticCurves–FirstReport. . . . . . . . . . . . . . . . . . . . . . . . . . 267 WilliamA. Stein,MarkWatkins PointCounting IsogenyVolcanoesandtheSEAAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 MireilleFouquet,Fran¸coisMorain FastEllipticCurvePointCountingUsingGaussianNormalBasis. . . . . . . . 292 HaeYoungKim,JungYoulPark,JungHeeCheon,JeHongPark, JaeHeonKim,SangGeunHahn AnExtensionofKedlaya’sAlgorithmtoArtin-SchreierCurves inCharacteristic2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 JanDenef,FrederikVercauteren TableofContents IX Cryptography ImplementingtheTatePairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 StevenD. Galbraith,KeithHarrison,DavidSoldera SmoothOrdersandCryptographicApplications. . . . . . . . . . . . . . . . . . . . . . . 338 CarlPomerance,IgorE. Shparlinski ChineseRemainderingforAlgebraicNumbersinaHiddenField. . . . . . . . . 349 IgorE. Shparlinski,RonSteinfeld FunctionFields AnAlgorithmforComputingWeierstrassPoints. . . . . . . . . . . . . . . . . . . . . . . 357 FlorianHess NewOptimalTameTowersofFunctionFieldsoverSmallFiniteFields . . . 372 Wen-ChingW. Li,HirenMaharaj,HenningStichtenoth, NoamD. Elkies PeriodicContinuedFractionsinEllipticFunctionFields. . . . . . . . . . . . . . . . 390 AlfredJ. vanderPoorten,XuanChuongTran DiscreteLogarithmsandFactoring FixedPointsandTwo-CyclesoftheDiscreteLogarithm . . . . . . . . . . . . . . . . 405 JoshuaHolden RandomCayleyDigraphsandtheDiscreteLogarithm. . . . . . . . . . . . . . . . . . 416 JeremyHorwitz,RamarathnamVenkatesan TheFunctionFieldSieveIsQuiteSpecial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 AntoineJoux,ReynaldLercier MPQSwithThreeLargePrimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 PaulLeyland,ArjenLenstra,BruceDodson,AlecMu?ett,SamWagsta? AnImprovedBabyStepGiantStepAlgorithm forPointCountingofHyperellipticCurvesoverFiniteFields. . . . . . . . . . . . 461 KazutoMatsuo,JinhuiChao,ShigeoTsujii 2 FactoringN=pq withtheEllipticCurveMethod. . . . . . . . . . . . . . . . . . . . . 475 PeterEbinger,EdlynTeske Gr¨obnerBases ANewSchemeforComputingwithAlgebraicallyClosedFields. . . . . . . . . . 491 AllanSteel X TableofContents Complexity AdditiveComplexityandRootsofPolynomials overNumberFieldsandp-adicFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 J. MauriceRojas AuthorIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Gauss Composition and Generalizations ManjulBhargava Clay Mathematics Institute and Princeton University Abstract. We discuss several higher analogues of Gauss composition and consider their potential algorithmic applications.

Specificaties

ISBN13:9783540438632
Taal:Engels
Bindwijze:paperback
Aantal pagina's:522
Uitgever:Springer Berlin Heidelberg
Druk:2002

Inhoudsopgave

Invited Talks.- Gauss Composition and Generalizations.- Elliptic Curves — The Crossroads of Theory and Computation.- The Weil and Tate Pairings as Building Blocks for Public Key Cryptosystems.- Using Elliptic Curves of Rank One towards the Undecidability of Hilbert’s Tenth Problem over Rings of Algebraic Integers.- On p-adic Point Counting Algorithms for Elliptic Curves over Finite Fields.- Number Theory.- On Arithmetically Equivalent Number Fields of Small Degree.- A Survey of Discriminant Counting.- A Higher-Rank Mersenne Problem.- An Application of Siegel Modular Functions to Kronecker’s Limit Formula.- Computational Aspects of NUCOMP.- Efficient Computation of Class Numbers of Real Abelian Number Fields.- An Accelerated Buchmann Algorithm for Regulator Computation in Real Quadratic Fields.- Arithmetic Geometry.- Some Genus 3 Curves with Many Points.- Trinomials ax 7 + bx + c and ax 8 + bx + c with Galois Groups of Order 168 and 8 · 168.- Computations on Modular Jacobian Surfaces.- Integral Points on Punctured Abelian Surfaces.- Genus 2 Curves with (3, 3)-Split Jacobian and Large Automorphism Group.- Transportable Modular Symbols and the Intersection Pairing.- Elliptic Curves and CM.- Action of Modular Correspondences around CM Points.- Curves Dy 2 = x 3 — x of Odd Analytic Rank.- Comparing Invariants for Class Fields of Imaginary Quadratic Fields.- A Database of Elliptic Curves — First Report.- Point Counting.- Isogeny Volcanoes and the SEA Algorithm.- Fast Elliptic Curve Point Counting Using Gaussian Normal Basis.- An Extension of Kedlaya’s Algorithm to Artin-Schreier Curves in Characteristic 2.- Cryptography.- Implementing the Tate Pairing.- Smooth Orders and Cryptographic Applications.- Chinese Remaindering for Algebraic Numbers in a Hidden Field.- Function Fields.- An Algorithm for Computing Weierstrass Points.- New Optimal Tame Towers of Function Fields over Small Finite Fields.- Periodic Continued Fractions in Elliptic Function Fields.- Discrete Logarithms and Factoring.- Fixed Points and Two-Cycles of the Discrete Logarithm.- Random Cayley Digraphs and the Discrete Logarithm.- The Function Field Sieve Is Quite Special.- MPQS with Three Large Primes.- An Improved Baby Step Giant Step Algorithm for Point Counting of Hyperelliptic Curves over Finite Fields.- Factoring N = pq 2 with the Elliptic Curve Method.- Gröbner Bases.- A New Scheme for Computing with Algebraically Closed Fields.- Complexity.- Additive Complexity and Roots of Polynomials over Number Fields and -adic Fields.

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Algorithmic Number Theory