Homogeneous Carbon Monoxide Hydrogenation.- 1. Stoichiometric CO Reduction (Model Reactions).- 1.1. CO Coordination.- 1.2. CO Activation (Scission and CH Bond Formation).- 1.2.1. CO Activation via Formyl Complexes.- 1.2.2. CO Activation via Hydroxymethyl, Hydroxymethylene Intermediates.- 1.2.3. CO Activation via Carbide, Carbyne, Carbene Intermediates.- 1.3. Formation of C1+ Species (Growth Products).- 1.3.1. Growth by Metal-C-C Bond Formation.- 1.3.2. Growth by Metal-O-C Bond Formation.- 1.3.3. Growth by Aldehydes as Intermediates.- 2. Catalytic Homogeneous Reduction of Carbon Monoxide.- 2.1. Reduction of CO with Reducing Agents Other than Molecular Hydrogen.- 2.2. Direct Reduction of CO with Hydrogen.- References.- FischerTropsch Synthesis.- 1. Introduction.- 2. Historic Developments in Heterogeneous Carbon Monoxide Hydrogenation.- 3. Technical Realization of the Fischer-Tropsch Synthesis.- 3.1. Types of Industrial Reactors.- 3.2. Integrated Structures of Production Plants.- 4. Basic Features of the Fischer-Tropsch Reaction.- 4.1. Stoichiometry.- 4.2. Thermodynamics.- 4.3. Molecular Weight Distribution of Products.- 4.4. Catalysts.- 4.4.1. Catalyst Metals.- 4.4.2. Promoters.- 4.4.3. Supports.- 4.4.4. Poisons.- 4.4.5. Preparation, Activation and Performance of Catalysts.- 4.5. Surface Species.- 5. Product Selectivity Control.- 5.1. Control of Molecular Weight Distribution.- 5.2. Selective Manufacture of Olefins.- 5.3. Selective Manufacture of Alcohols.- 6. Mechanistic Considerations.- 6.1. The Carbide Mechanism.- 6.2. The Hydroxycarbene Mechanism.- 6.3. Carbon Monoxide Insertion Mechanisms.- 6.4. Evaluation of the Proposed Mechanisms.- 7. Conclusions.- References.- Methanol Building Block for Chemicals.- 1. Mechanism of CO Reduction to Methanol.- 2. Future Use of Methanol.- 2.1. Methanol: Raw Material for the Chemical Industry.- 2.1.1. Base Chemicals from Methanol.- 2.1.1.1. Olefins and aromatics.- 2.1.1.2. Generation of pure hydrogen.- 2.1.1.3. Generation of pure CO.- 2.1.1.4. Synthesis of styrene.- 2.1.2. Fine Chemicals from Methanol.- 2.1.2.1. Acetic anhydride.- 2.1.2.2. Vinylacetate.- 2.1.2.3. Ethylene glycol.- 2.1.2.4. Methyl methacrylate.- 2.1.2.5. Methyl formate.- References.- The Homologation of Methanol.- 1. Introduction.- 1.1. Principle of the Homologation Reaction.- 1.2. Potential Use of Methanol Homologation.- 2. Cobalt-Catalyzed Methanol Homologation.- 2.1. Historic Developments and Recent Progress.- 2.2. Parameters Controlling the Homologation Reaction.- 2.2.1. Influence of Catalyst Composition.- 2.2.1.1. Nature of the cobalt compound.- 2.2.1.2. Promoters.- 2.2.1.3. Ligands.- 2.2.1.4. Cometals as hydrogenation catalysts.- 2.2.2. Influence of Reaction Conditions.- 2.2.2.1. Solvents.- 2.2.2.2. CO/H2 ratio.- 2.2.2.3. Syngas pressure.- 2.2.2.4. Reaction temperature.- 2.2.2.5 Reaction time.- 2.3. Possible Reaction Mechanisms.- 2.3.1. Nonpromoted Cobalt Catalysts.- 2.3.2. Iodine-Promoted Cobalt Catalysts.- 2.3.3. Hydrogenation of Acetaldehyde to Ethanol.- 2.3.4. Side-product Formation.- 3. Other Catalyst Metals.- 3.1. Iron Catalysts.- 3.2. Ruthenium Catalysts.- 3.3. Rhodium Catalysts.- 4. Conclusions.- References.- Hydroformylation and Carbonylation Reactions.- 1. Hydroformylation and Carbonylation of Unsaturated Organic Substrates.- 1.1. Introduction.- 1.2. Reppe-Type Chemistry.- 1.2.1. Alkyne Carbonylation.- 1.2.2. Alkene Carbonylation.- 1.3. The Hydroformylation Reaction.- 1.3.1. Unmodified Cobalt Carbonyl Systems.- 1.3.2. Phosphine-Modified Cobalt Carbonyl Systems.- 1.3.3. Rhodium Catalysts.- 1.4. General Mechanistic Implications.- 1.5. Carbonylation in Acidic Conditions.- 2. Carbonylation Under Oxidative Conditions.- 2.1. Introduction.- 2.2. The Synthesis of Oxalates.- 2.3. The Synthesis of Acrylates and Related Derivatives.- 2.4. The Synthesis of Carbonates.- References.- Activation of Carbon Dioxide via Coordination to Transition Metal Complexes.- 1. Introduction.- 2. Insertion of Carbon Dioxide into Transition Metal Complexes.- 2.1. Insertion into M-C Bonds.- 2.2. Insertion into M-H Bonds.- 2.3. Insertion into M-O Bonds.- 2.4. Insertion into M-N Bonds.- 3. Transition Metal-Catalyzed Syntheses Involving Carbon Dioxide.- 3.1. Reactions of CO2 with Hydrogen and Further Reaction Components.- 3.2. Reactions of CO2 with Unsaturated Hydrocarbons.- 3.2.1. Alkynes.- 3.2.2. Alkenes.- 3.2.3. Dienes.- 3.2.4. Methylenecyclopropanes.- 3.3. Reactions of CO2 with Strained Heterocycles.- 4. Deoxygenation of CO2.- 5. Dimerization of CO2.- 6. Carbon Dioxide as a Cocatalyst in Homogeneous Catalysis.- 6.1. Dimerization.- 6.2. Telomerization.- 6.3. Metathesis.- 6.4. Hydroformylation.- 6.5. Polymerization.- 7. Conclusions.- 8. Glossary of Nonstandard Abbreviations.- References.- Hydrocyanation.- 1. Introduction.- 1.1. Application of HCN and its Derivatives.- 1.2. Preparation of HCN.- 1.3. Properties of HCN.- 1.4. Coordination Modes of HCN.- 2. Reaction of HCN with Multiple Bonds.- 2.1. Hydrocyanation of Unsaturated Hydrocarbons.- 2.1.1. Hydrocyanation of Acetylene.- 2.1.2. Hydrocyanation of Olefins.- 2.1.2.1. Activation of HCN by cuprous salts.- 2.1.2.2. Selectivity of hydrocyanation reactions.- 2.1.2.3. Oxycyanation of olefins.- 2.1.2.4. Reaction with 1.4-butenediol.- 2.1.2.5. Reaction of cyanogen with hydrocarbons.- 2.1.3. Isonitrile Synthesis by Hydrocyanation.- 2.2. Hydrocyanation of Functionalized Olefins.- 2.3. Hydrocyanation of C = 0 and C=N Double Bonds.- 3. Applications of HCN in Organic Chemistry Other than Addition to Multiple Bonds.- 3.1. Cyanogen Chemistry.- 3.2. Oxamide Synthesis.- 3.3. Cyclotrimerization of HCN and of its Derivatives.- 3.4. Polymerization of HCN.- 3.5. Formamide Synthesis.- 3.6. Oxidation and Hydrogenation of HCN.- 4. Physiological Properties of HCN and Safety.- References.- Methane.- 1. Methane.- 1.1. Industrial and Synthetic Applications of Methane.- 1.1.1. Synthesis Gas.- 1.1.2. Halogenation of Methane.- 1.1.3. Hydrocyanic Acid Production.- 1.1.4. Acetylene Production.- 1.1.5. Particular Reactions.- 1.1.5.1. Nitriles synthesis.- 1.1.5.2. Direct synthesis of methanol and formaldehyde.- 1.1.5.3. Carboxylation of methane.- 1.1.5.4. Formation of CS2.- 1.1.5.5. Other reactions.- 1.2. Activation of Methane.- 1.2.1. Activation of Methane by Soluble Metal Complexes.- 1.2.2. Activation of Methane by Superacids.- 1.3. Methane in Nature.- 2. Alkanes.- 2.1. Activation of Alkanes by Metal Complexes.- 2.2. Activation of Alkanes on Metal Surfaces.- 2.3. Activation of Alkanes by Metal Ions Through Oxidoreduction Processes.- 2.4. Metallo Enzymes Activation of Alkanes.- References.- Carbenes.- 0. Introduction.- 1. The Structure of Carbenes.- 2. Reactivity of Carbenes.- 3. Regioselectivity of Carbenes.- 4. The Relative Stability of Spin States.- 5. The Generation of Carbenes.- 6. Carbene Metal Complexes.- 7. The Structure of Carbenoids.- 8. Carbenes in Fine-Chemical Synthesis.- 8.1. Cycloaddition of Carbenes.- 8.2. The Insertion of Carbenes.- 8.3. Ring Enlargement Reactions and Ring Opening Processes.- 8.4 Carbene Rearrangements.- 8.5. The 1, 3-dipolar Addition.- 9. Carbenoids in Fine-Chemicals Synthesis.- 10. Mechanisms of Copper-Catalyzed Carbene Reactions.- 11. Catalysis by Metals Other than Copper.- 12. Synthetic Applications of Group VIII Transition Metal Complexes.- 13. Carbenoids in Industrial Process.- 13.1. Olefin Metathesis.- 13.2. Hydrocarbon Acitivation.- 13.2.1. Hydrogen Deuterium Exchange in Methane.- 13.2.2. Hydrogenolysis of Alkanes.- 13.2.3. Isomerization of Alkanes.- 13.3. Carbenes in Fischer-Tropsch Reactions.- 13.3.1. Methylene Carbenoids.- 13.3.2. Alkylidene Carbenoids.- 13.3.3. Oxycarbene Complexes.- 13.3.4. Hydroxycarbenes.- References.