<p>1. Atom<br>1.1. Ionization potentials and electron affinities<br> 1.1.1. Ionization potentials of atoms<br> 1.1.2. Electron affinity<br>1.2. Effective nuclear charge<br>1.3. Absolute dimensions of atoms<br>1.4. Radii of atoms in molecules and crystals<br> 1.4.1. Historical outline<br> 1.4.2. Metallic radii<br> 1.4.3. Covalent radii<br>1.5. Radii of ions in molecules and crystals<br> 1.5.1. Methods of estimating ionic radii<br> 1.5.2. Experimental (bonded) ionic radii<br> 1.5.3. Energy-derived ionic radii<br> 1.5.4. Ultimate ionic radii</p><p>2. Chemical bond<br>2.1. Historical development of the concept<br>2.2. Types of bonds: covalent, ionic, polar, metallic<br> 2.2.1. Ionic bond<br> 2.2.2. Covalent bond<br> 2.2.3. Polar bond, effective charges of atoms<br> 2.2.4. Metallic bond<br> 2.2.5. Effective valences of atoms<br>2.3. Energies of the chemical interactions of atoms<br> 2.3.1. Bond energies in molecules and radicals<br> 2.3.2. Bond energies in crystals<br> 2.3.3. Crystal lattice energies<br> 2.3.4. Band gaps in solids<br>2.4. Concept of electronegativity<br> 2.4.1. Discussion about electronegativity<br> 2.4.2. Thermochemical electronegativities <br> 2.4.3. Ionization electronegativities<br> 2.4.4. Geometrical electronegativities<br> 2.4.5. Recommended system of electronegativities of atoms and radicals<br> 2.4.6. Equalization of electronegativities and atomic charges<br>2.5. Effective charges of atoms and chemical behavior<br>2.6. Change of chemical bond character under pressure<br>2.7. Conclusions</p><p>3. “Small” molecule.<br>3.1. Introduction<br>3.2. Inorganic molecules and radicals<br> 3.2.1. Bond distances<br> 3.2.2. Bond angles. VSEPR concept<br/> 3.2.3. Non-stoichiometric and unusual molecules <br>3.3. Organic molecules<br>3.4. Organometallic compounds<br>3.5. Clusters<br> 3.5.1. Boron clusters<br> 3.5.2. Transition metal clusters<br> 3.5.3. Clusters of main group elements<br> 3.5.4. Fullerenes<br>3.6. Coordination compounds</p><p>4. Intermolecular forces<br>4.1. Van der Waals interaction<br>4.2. Interdependence of the lengths of covalent and van der Waals bonds<br>4.3. Van der Waals radii<br> 4.3.1. Introduction<br> 4.3.2. Crystallographic van der Waals radii<br> 4.3.3. Equilibrium radii of atoms<br> 4.3.4. Anisotropic van der Waals radii<br> 4.3.5. Concluding remarks<br>4.4. Donor-acceptor interactions<br>4.5. Hydrogen bond</p><p>5. Crystal structure – idealised<br>5.1. Structures of elements<br> 5.1.1. Structures of metals<br> 5.1.2. Structures of non-metals<br>5.2. Binary inorganic crystalline compounds<br> 5.2.1 Crystal structures of halides, oxides, chalcogenides, pnictides<br> 5.2.2 Structures of compounds with diverse bonds<br>5.3. Interconversions of crystal structures<br>5.4. Effective coordination number <br>5.5. Bond valence (bond strength, bond order) <br>5.6. Ternary compounds<br>5.7. Structural features of silicates</p><p>6. Crystal structure – real<br>6.1. Thermal motion<br>6.2. Lindemann’s hypothesis<br>6.3. Defects in crystals<br> 6.3.1. Classification of defects<br> 6.3.2. Defects induced by shock waves<br> 6.3.3. Real structure and melting of solids<br>6.4. Isomorphism and solid solutions</p><p>7. Amorphous state<br>7.1. Dispersing powders<br>7.2. Amorphous solids, glasses<br>7.3. Structure of melts<br>7.4. Structure of aqueous solutions </p><p>8. Between molecule and solid<br>8.1. Energetic properties of clusters and nanoparticles<br/> 8.1.1. Melting temperatures and heats under transition from bulk to nanophases<br> 8.1.2. Energy variation under transition from bulk to clusters<br>8.2. Changes of atomic structure on transition from bulk solids to nanophases<br>8.3. Size effect in the dielectric permittivity of crystals<br> 8.3.1. Effect of the energy factor<br> 8.3.2. Effect of the phase composition on ε of barium titanate<br> 8.3.3. Dielectric behavior of ceramic materials<br> 8.3.4. Dielectric properties of multi-phase systems<br>8.4. Conclusions</p><p>9. Phase transitions <br>9.1. Polymorphism<br> 9.1.1. Polyamorphism<br>9.2 Energies of phase transitions<br> 9.2.1. Melting heats of compounds<br> 9.2.2. Sublimation heats of elements and compounds<br> 9.2.3. Evaporation heats of compounds<br> 9.2.4. Enthalpies of phase transformations</p><p>10. Extreme conditions<br>10.1. Polymorphic transformations under high static pressures<br>10.2. Pressure-induced amorphisation and polyamorphism<br>10.3. Effect of the crystal size on the pressure of phase transition <br>10.4. Solid phase transformations under high dynamic pressures<br>10.5. Detonation transformation and synthesis of diamond and c-BN 10.6. Equations of state of solids </p><p>11. Structure and optical properties<br>11.1. Refractive index<br> 11.1.1. Definitions, anisotropy, theory<br> 11.1.2. Influence of composition, structures and thermodynamic conditions on refractive indices<br>11.2. Polarization and dipole moments<br>11.3. Molecular refraction: experiment and calculation<br> 11.3.1. Formulae of refraction<br> 11.3.2. Dependence of refractions on the structure and thermodynamic parameters<br> 11.3.3. Atomic and covalent refractions<br> 11.3.4. Ionic refractions<br> 11.3.5. Bond refractions<br>11.4. Structural application of refractometry<br>11.5. Structural applications of spectroscopy 11.6. Optical electronegativities</p>