Nonlinear Symmetries and Nonlinear Equations
Samenvatting
The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of dift"erent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to dift"erential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool.
Specificaties
Inhoudsopgave
Net verschenen
Rubrieken
- aanbestedingsrecht
 - aansprakelijkheids- en verzekeringsrecht
 - accountancy
 - algemeen juridisch
 - arbeidsrecht
 - bank- en effectenrecht
 - bestuursrecht
 - bouwrecht
 - burgerlijk recht en procesrecht
 - europees-internationaal recht
 - fiscaal recht
 - gezondheidsrecht
 - insolventierecht
 - intellectuele eigendom en ict-recht
 - management
 - mens en maatschappij
 - milieu- en omgevingsrecht
 - notarieel recht
 - ondernemingsrecht
 - pensioenrecht
 - personen- en familierecht
 - sociale zekerheidsrecht
 - staatsrecht
 - strafrecht en criminologie
 - vastgoed- en huurrecht
 - vreemdelingenrecht
 

