1 Origins and development.- 1.1. Introduction.- 1.2 The ICP-MS system.- 2 Instrumentation for ICP-MS.- 2.1 The inductively coupled plasma.- 2.1.1 Torch and plasma.- 2.1.2 RF coupling.- 2.1.3 Sample introduction.- 2.1.4 Sample history.- 2.1.5 Plasma populations.- 2.1.6 Distribution of ions in the plasma.- 2.1.7 Other plasmas.- 2.2 Ion extraction.- 2.2.1 Boundary layer and sheath.- 2.2.2 Plasma potential and secondary discharge.- 2.2.3 Supersonic jet.- 2.2.4 Gas dynamics.- 2.2.5 Ion kinetic energies.- 2.3 Ion focusing.- 2.3.1 Operation of ion lenses.- 2.3.2 Ion lenses in ICP-MS.- 2.3.3 Space charge effects.- 2.4 Quadrupole mass spectrometers.- 2.4.1 Quadrupole configuration.- 2.4.2 Ion trajectories and stability diagrams.- 2.4.3 Characteristics of mass spectra from quadrupoles.- 2.4.4 RF-only quadrupoles.- 2.4.5 Scanning and data acquisition.- 2.5 Other mass spectrometers.- 2.6 Ion detection.- 2.6.1 Channeltron electron multipliers.- 2.6.2 Signal measurement by pulse counting.- 2.6.3 Other detectors.- 2.7 Vacuum considerations.- 2.7.1 Properties and flow of gases.- 2.7.2 A vacuum system for ICP-MS.- 2.7.3 Pumps used in ICP-MS.- 3 Instrument options.- 3.1 Introduction.- 3.2 Nebulisers.- 3.2.1 Introduction.- 3.2.2 Concentric nebulisers.- 3.2.3 Cross-flow nebulisers.- 3.2.4 Babington type nebuliser.- 3.2.5 Frit type nebuliser.- 3.2.6 Ultrasonic nebuliser.- 3.3 Spray chambers.- 3.3.1 Principles.- 3.3.2 Operation.- 3.3.3 Thermally stabilised spray chambers for ICP-MS.- 3.4 Torches.- 3.4.1 Construction.- 3.4.2 Demountable torches.- 3.4.3 Alignment.- 3.4.4 Specialised torches.- 3.5 Interface.- 3.5.1 Introduction.- 3.5.2 Sampling cones.- 3.5.3 Skimmer cones.- 4 Sample introduction for liquids and gases.- 4.1 Introduction.- 4.2 Electrothermal vaporisation.- 4.2.1 Principles.- 4.2.2 Instrumentation.- 4.2.3 Operating parameters.- 4.2.4 Applications and analytical performance of ETV-ICP-MS.- 4.3 Vapour generation and gas phase sample introduction.- 4.3.1 Introduction.- 4.3.2 Hydride generation.- 4.3.3 Osmium tetroxide vapour generation.- 4.3.4 Reactive gases.- 4.4 Liquid chromatography.- 4.4.1 Introduction.- 4.4.2 Principles.- 4.4.3 Instrumentation, reagents and operating parameters.- 4.4.4 Applications.- 4.5 Flow injection.- 4.5.1 Introduction.- 4.5.2 Apparatus.- 4.5.3 Sample introduction.- 4.5.4 Operating parameters.- 4.5.5 Applications.- 4.6 Direct sample insertion.- 4.6.1 Principles.- 4.6.2 Applications.- 5 Interferences.- 5.1 Introduction.- 5.2 Spectroscopic interferences.- 5.2.1 Isobaric overlap.- 5.2.2 Polyatomic ions.- 5.2.3 Refractory oxides.- 5.2.4 Doubly charged ions.- 5.2.5 Alleviation of spectroscopic interferences.- 5.3 Non-spectroscopic interferences.- 5.3.1 High dissolved solids.- 5.3.2 Suppression and enhancement effects.- 6 Calibration and data handling.- 6.1 Introduction.- 6.2 General concepts.- 6.2.1 Mass scale calibration.- 6.2.2 Accuracy, precision and reproducibility.- 6.3 Instrumental modes of data collection.- 6.3.1 Peak hopping.- 6.3.2 Scanning.- 6.4 Linearity of response.- 6.5 Blanks.- 6.6 Factors affecting signal stability.- 6.7 Qualitative analysis.- 6.8 Semi-quantitative calibration.- 6.9 Quantitative analysis.- 6.9.1 External calibration techniques.- 6.9.2 Raw data correction procedures.- 6.9.3 Standard additions.- 6.9.4 Isotope dilution.- 7 Sample preparation for ICP-MS.- 7.1 Introduction.- 7.2 General considerations.- 7.2.1 Laboratory equipment and practices.- 7.2.2 Choice of mineral acids.- 7.2.3 Limits of quantitative analysis.- 7.2.4 Precision and accuracy: assessing a digestion procedure.- 7.3 Digestion procedures.- 7.3.1 Open vessel digestions.- 7.3.2 Closed vessel digestions.- 7.3.3 Alkali fusions.- 7.3.4 Microwave digestion.- 7.4 Separation and pre-concentration methods.- 7.4.1 Rare earth elements.- 7.4.2 Precious metals.- 7.4.3 Petrogenic disciminators: Hf, Nb, Ta, Zr.- 7.5 Conclusions and overview.- 8 Elemental analysis of solutions and applications.- 8.1 Introduction.- 8.2 Multi-element determinations.- 8.3 Geological applications.- 8.3.1 Rare earth elements.- 8.3.2 Platinum group metals.- 8.3.3 Zirconium, niobium, hafnium, tantalum, thorium and uranium.- 8.3.4 Molybdenum, tungsten and thallium.- 8.3.5 Analysis of specific sample types.- 8.4 Environmental applications.- 8.4.1 Multi-element applications.- 8.4.2 Single-element applications.- 8.5 Nuclear applications.- 8.5.1 Uranium matrices.- 8.5.2 Lithium and boron matrices.- 8.5.3 Zirconium and hafnium alloys.- 8.6 Industrial applications.- 8.6.1 Metals.- 8.6.2 Hydrocarbons.- 8.6.3 Other sample types.- 8.7 Biological applications.- 8.7.1 Foods.- 8.7.2 Animal tissue.- 8.7.3 Medical applications.- 8.8 Summary.- 9 The analysis of natural waters by ICP-MS.- 9.1 Introduction.- 9.2 Water sampling procedures for ICP-MS.- 9.2.1 Filtration, acidification and storage.- 9.3 Direct water analysis by ICP-MS.- 9.3.1 Pneumatic nebulisation.- 9.3.2 Electrothermal vaporisation and direct sample insertion.- 9.3.3 Gas phase injection.- 9.4 Water analysis with chemical separation and/or pre-concentration.- 9.4.1 Seawater.- 9.4.2 Freshwater.- 9.4.3 On-line separation and pre-concentration.- 9.5 Calibration strategies.- 9.5.1 External calibration.- 9.5.2 Standard additions.- 9.5.3 Isotope dilution.- 10 Analysis of solid samples.- 10.1 Introduction.- 10.1.1 Calibration.- 10.2 Slurry nebulisation.- 10.2.1 Grinding techniques.- 10.2.2 Dispersing agents.- 10.2.3 Particle size distributions.- 10.2.4 Applications of slurry nebulisation.- 10.3 Laser ablation.- 10.3.1 What is a laser?.- 10.3.2 Modes of operation.- 10.3.3 System configuration.- 10.3.4 Laser operation.- 10.3.5 Sample preparation.- 10.3.6 Calibration.- 10.3.7 Interferences.- 10.3.8 Detection limits.- 10.3.9 Practical considerations.- 10.3.10 Applications.- 10.4 Direct sample insertion.- 10.5 Powdered solids.- 10.6 Arc nebulisation.- 11 Isotope ratio measurement.- 11.1 Introduction.- 11.1.1 Traditional methods of isotope ratio determination.- 11.2 Instrument performance.- 11.2.1 Sensitivity and counting statistics.- 11.2.2 Dead time.- 11.2.3 Resolution and abundance sensitivity.- 11.2.4 Mass bias.- 11.3 Applications and methods of isotope analysis.- 11.3.1 Lithium.- 11.3.2 Boron.- 11.3.3 Iron.- 11.3.4 Copper.- 11.3.5 Zinc.- 11.3.6 Rhenium and osmium.- 11.3.7 Lead.- 11.3.8 Uranium.- 11.3.9 Other isotopic ratios determined by ICP-MS.- Appendices.- Appendix 1 Originators of reference material cited in the text.- Appendix 2 Naturally-occurring isotopes—useful data.- Appendix 3 Glossary.- References.