Geothermal Resources

Specificaties
Paperback, 486 blz. | Engels
Springer Netherlands | 2e druk, 2011
ISBN13: 9789401069878
Rubricering
Juridisch :
Springer Netherlands 2e druk, 2011 9789401069878
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Since the Arab oil embargo of 1974, it has been clear that the days of almost limitless quantities of low-cost energy have passed. In addition, ever­ worsening pollution due to fossil fuel consumption, for instance oil and chemical spills, strip mining, sulphur emission and accumulation of solid wastes, has, among other things, led to an increase of as much as 10% in the carbon dioxide content of the atmosphere in this century. This has induced a warming trend through the 'greenhouse effect' which prevents infrared radiation from leaving it. Many people think the average planetary temperatures may rise by 4°C or so by 2050. This is probably true since Antarctic ice cores evidence indicates that, over the last 160000 years, ice ages coincided with reduced levels of carbon dioxide and warmer interglacial episodes with increased levels of the gas in the atmosphere. Consequently, such an elevation of temperature over such a relatively short span of time would have catastrophic results in terms of rising sea level and associated flooding of vast tracts of low-lying lands. Reducing the burning of fossil fuels makes sense on both economic and environmental grounds. One of the most attractive alternatives is geothermal resources, especially in developing countries, for instance in El Salvador where geothermal energy provides about a fifth of total installed electrical power already. In fact, by the middle 1980s, at least 121 geothermal power plants were operating worldwide, most being of the dry steam type.

Specificaties

ISBN13:9789401069878
Taal:Engels
Bindwijze:paperback
Aantal pagina's:486
Uitgever:Springer Netherlands
Druk:2

Inhoudsopgave

1 The Origins of Earth Heat.- 1.1 Beginnings.- 1.1.1 Genesis.- 1.1.2 Accumulation of planetesimals.- 1.1.3 Differentiation of the Earth.- 1.1.4 Accretional heating.- 1.1.5 Heat source distribution during accretion.- 1.2 Developments.- 1.2.1 Origin of core, mantle and crust.- 1.2.2 Oceanic crust.- 1.2.3 Continental crust.- 1.2.4 Melting during subduction.- 1.2.5 Mineral transformations and slab sinking (megaliths).- 1.2.6 ‘Plum pudding’ mixture.- 1.2.7 Convection in the mantle.- 1.2.8 The role of eclogite in the upper mantle.- 1.2.9 The lower mantle.- 1.2.10 Material transfer through the double-boundary thermal zone.- 1.2.11 Inner and outer cores.- 1.2.12 Temperature profile.- 1.3 Inferences.- 1.3.1 The early crust.- 1.3.2 The later crust.- 1.3.3 Plate tectonics.- 1.3.4 Generation of crust.- 1.3.5 Stabilization of continental crust.- 1.3.6 The evolution of the Earth.- 1.3.7 The geochronological aspects of geothermal gradients.- 1.3.8 Earth heat.- 1.3.9 Closing the gaps.- 2 Geothermal Systems and Models.- 2.1 Geo thermal Systems.- 2.2 Classification.- 2.2.1 Convective geothermal systems.- 2.2.2 Conductive geothermal systems.- 2.3 Heat Transfer.- 2.3.1 Fractured media.- 2.3.2 Balance laws for fluid flow.- 2.4 Ideal Models.- 2.4.1 Linear stability.- 2.4.2 Real geothermal systems.- 2.4.3 Non-linear theory.- 2.4.4 Feasible models.- 2.5 East Mesa Anomaly, Imperial Valley, California, USA: A Conceptual Model.- 2.6 Pre-production Models of Hydrothermal Systems.- 2.6.1 Long Valley Caldera, Sierra Nevada, California, USA.- 2.6.2 Salton Sea, California, USA.- 2.6.3 Olkaria, Kenya, East Africa.- 2.6.4 Wairakei, North Island, New Zealand.- 3 Geothermal Exploration.- 3.1 Objective.- 3.2 Methods.- 3.2.1 Geological, hydrological and mineralogical methods.- 3.2.2 Geophysical methods.- 3.2.3 Geochemical and isotopic methods.- 3.2.4 Drilling.- 3.2.5 Geothermal energy recovery using oil exploration data.- 4 Geothermal Resource Assessment.- 4.1 General Considerations.- 4.2 Methods.- 4.2.1 Surface heat flux.- 4.2.2 Volume.- 4.2.3 Planar fracture.- 4.2.4 Magmatic heat budget.- 4.3 Resupply of Heat.- 4.4 Nomenclature.- 4.5 Global Geothermal Resources.- 4.5.1 Overview.- 5 Exploitation of Geothermal Fields.- 5.1 Background.- 5.2 General Model.- 5.2.1 Single-phase model.- 5.2.2 Two-phase model.- 5.3 Re-injection.- 5.4 Artificial Stimulation.- 5.4.1 Conventional explosives.- 5.4.2 Nuclear explosives.- 5.5 Hot Dry Rock.- 5.5.1 The Los Alamos Project (USA).- 5.5.2 The Camborne School of Mines Project (UK).- 5.5.3 Ancillary aspects.- 5.5.4 Future prospects for geothermal HDR in the UK.- 5.6 Future Prospects for Geothermal Aquifers in the UK.- 5.7 European Experience.- 5.8 Equipment Necessary for Exploitation.- 5.8.1 Production pumps.- 5.8.2 Piping.- 5.8.3 Heat exchangers.- 5.8.4 Heat pumps.- 5.8.5 Re-injection pumps.- 5.8.6 Corrosion and scaling.- 5.8.7 Geothermal power plants.- 6 Environmental Impact.- 6.1 Reflections on Consequences.- 6.2 Air and Water Quality.- 6.3 Water from Geothermal Resources.- 6.3.1 Distillation.- 6.3.2 Other techniques.- 6.3.3 Budgets.- 6.4 Geological Hazards.- 6.5 Plant and Animal Life.- 6.6 Environmental Issues.- 7 Uses of Geothermal Energy.- 7.1 World Energy.- 7.2 Non-electrical Uses of Geothermal Energy.- 7.2.1 Transmission of geothermal heat.- 7.2.2 Process heating.- 7.2.3 Space heating.- 7.2.4 Group heating schemes.- 7.2.5 Horticulture and fish farming.- 7.2.6 Heating equipment appropriate to geothermal systems.- 7.3 Geothermal Prognosis.- 7.3.1 India.- 7.3.2 Thailand.- 7.3.3 Kenya.- 7.3.4 Santa Lucia.- 7.3.5 A developed country—Italy.- Appendixes.- 1. Geothermal Miscellanea.- 2. Companies of Geothermal Interest.- 3. Organizations of Geothermal Interest.- 4. World Geothermal Localities.- Author Index.

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Geothermal Resources