Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
, , , , e.a.

Mixed Effects Models and Extensions in Ecology with R

Specificaties
Gebonden, 574 blz. | Engels
Springer | 2009e druk, 2009
ISBN13: 9780387874579
Rubricering
Hoofdrubriek : Wetenschap en techniek
Juridisch :
Springer 2009e druk, 2009 9780387874579
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.

Specificaties

ISBN13:9780387874579
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:574
Uitgever:Springer
Druk:2009
Verschijningsdatum:12-3-2009

Inhoudsopgave

Limitations of linear regression applied on ecological data. - Things are not always linear; additive modelling. - Dealing with hetergeneity. - Mixed modelling for nested data. - Violation of independence - temporal data. - Violation of independence; spatial data. - Generalised linear modelling and generalised additive modelling. - Generalised estimation equations. - GLMM and GAMM. - Estimating trends for Antarctic birds in relation to climate change. - Large-scale impacts of land-use change in a Scottish farming catchment. - Negative binomial GAM and GAMM to analyse amphibian road killings. - Additive mixed modelling applied on deep-sea plagic bioluminescent organisms. - Additive mixed modelling applied on phyoplankton time series data. - Mixed modelling applied on American Fouldbrood affecting honey bees larvae. - Three-way nested data for age determination techniques applied to small cetaceans. - GLMM applied on the spatial distribution of koalas in a fragmented landscape. - GEE and GLMM applied on binomial Badger activity data.

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Mixed Effects Models and Extensions in Ecology with R