<p>Cover image</p> <p>Title page</p> <p>Copyright</p> <p>Sponsors</p> <p>Foreword</p> <p>Introductory Papers</p> <p>Chapter 1: Use of finite element and computational fluid dynamics analyses in the development of positive displacement compressor simulations</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 SCREW COMPRESSOR DISCHARGE PORT</p> <p>3 SCROLL COMPRESSOR LEAKAGE</p> <p>4 RECIPROCATING COMPRESSOR PRESSURE PULSATION</p> <p>5 CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 2: Successful trials of turbo-boosting of positive displacement compressors</p> <p>ABSTRACT</p> <p>1 BACKGROUND</p> <p>2 APPLICATION 1- TURBOCOMPRESSOR WITH PISTON COMPRESSOR</p> <p>3 APPLICATION 2: TURBOCOMPRESSOR WITH WATER-INJECTED SCREW COMPRESSOR</p> <p>4 CONCLUSIONS AND DISCUSSIONS</p> <p>5 ACKNOWLEDGEMENTS</p> <p>Turbo Compressors</p> <p>Chapter 3: Design rationalisation for centrifugal turboblowers in the water industry</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 BACKGROUND</p> <p>2 OPPORTUNITY</p> <p>3 THE DESIRED STATE</p> <p>4. SOLUTION</p> <p>5 IMPLEMENTATION</p> <p>6 RESULTS</p> <p>7 FUTURE ACTIONS</p> <p>Chapter 4: New multistage axial compressor and chiller development for water as refrigerant</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 FEASIBILITY STUDY</p> <p>3 DESIGN AND DEVELOPMENT OF THE AXIAL COMPRESSORS</p> <p>4 TEST OF COMPRESSOR AND CHILLER</p> <p>5 EXPECTED PERFORMANCE AND CHILLER DATA</p> <p>6 PERSPECTIVES</p> <p>Chapter 5: Investigation of the gas flow in the vaneless diffusers of the centrifugal compressors</p> <p>ABSTRACT</p> <p>NOTATION</p> <p>Subscripts</p> <p>1 INTRODUCTION</p> <p>2 CALCULATION PROCEDURE</p> <p>3 MODEL VERIFICATION</p> <p>4 CONCLUSIONS</p> <p>Chapter 6: The design of vaned diffusers of centrifugal compressors based on the given velocity distribution</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>Subscripts</p> <p>1 INTRODUCTION</p> <p>2 THE PROBLEM DEFINITION</p> <p>3 MATHEMATICAL MODEL</p> <p>4 THE DESIGN METHOD</p> <p>5 EXPERIMENTAL DATA</p> <p>6 CONCLUSIONS</p> <p>Chapter 7: OMNI turbo – a high efficiency, nested two-stage impeller</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 TWO STAGE NESTED IMPELLER COMPRESSION STAGE - OMNI</p> <p>3 STAGE ANALYSIS</p> <p>4 MANUFACTURE OF IMPELLER AND ASSOCIATED PARTS</p> <p>5 A SINGLE SHAFT, HIGH SPEED MICRO-COMPRESSOR USING OMNI TURBO</p> <p>6 CONCLUSIONS</p> <p>Chapter 8: Optimisation of the high vacuum side channel pump</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 DESIGN OF THE PUMP</p> <p>3 DESIGN OF A REGENERATIVE PUMP STAGE</p> <p>4 PERFORMANCE OF THE PUMP</p> <p>5 VARIATION OF THE ROTOR BLADE GEOMETRY</p> <p>6 VARIATION OF THE NUMBER OF BLADES</p> <p>7 MEMBRANE PUMP AS A BACKING PUMP</p> <p>8 MEASUREMENTS WITH DIFFERENT GASES</p> <p>9 EQUATIONS FOR THE CALCULATION OF REGENERATIVE PUMPS</p> <p>10 CONCLUSION</p> <p>Chapter 9: The TurboClaw® compressor for engine downsizing by twin-charging</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 INNOVATION</p> <p>3 MOTOR AND DRIVE TECHNOLOGY</p> <p>4 EXPERIMENTAL VALIDATION</p> <p>5 ACKNOWLEDGEMENTS</p> <p>6 CONCLUSION</p> <p>Chapter 10: Study of IGV and rotor interactions in a cooling axial fan</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 STEADY SIMULATIONS</p> <p>3 UNSTEADY SIMULATIONS</p> <p>4 EFFECT OF AXIAL GAP</p> <p>5 CONCLUSION</p> <p>Heat Pump and Refrigeration</p> <p>Chapter 11: Development of R744 two stage compressor for commercial heat pump water heater</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 BASIC STRUCTURE OF DEVELOPED COMPRESSOR</p> <p>3 EFFICIENCY IMPROVEMENT</p> <p>4 RELIABILITY IMPROVEMENT</p> <p>5 APPLICATION OF THE DEVELOPED SCROTARY COMPRESSOR INTO COMMERCIAL HEAT PUMP WATER HEATER</p> <p>6 CONCLUSIONS</p> <p>Chapter 12: Theoretical and experimental analysis of the superheating in heat pump compressors</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 THEORETICAL DEVELOPMENT</p> <p>3 RESULTS AND DISCUSSIONS</p> <p>4 CONCLUSIONS</p> <p>5 ACKNOWLEDGEMENT</p> <p>Chapter 13: Methodology of performance calculation of condensing unit thanks to the compressor</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 DESCRIPTION OF THE MATHEMATICAL SYSTEM</p> <p>3 MODEL VALIDATION</p> <p>4 CALCULATION TOOL</p> <p>5 CONCLUSION</p> <p>Reciprocating Compressors (Valves)</p> <p>Chapter 14: Industrial reed valve development using a virtual prototyping approach</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 STATE OF THE ART IN REED VALVE SIMULATION</p> <p>3 VALVE DESIGN</p> <p>4 SIMULATION</p> <p>5 CONCLUSION</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 15: Accounting for backflow condition on effective force and flow areas of reed type valves</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 MATHEMATICAL MODEL</p> <p>3 RESULTS</p> <p>4 CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 16: Influence of suction valve parameter on volumetric efficiency and power loss – valve design chart</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 MODEL AND RESULTS EXAMPLES</p> <p>3 VALVE PERFORMANCES AND EVAPORATING TEMPERATURE</p> <p>4 SENSITIVITY ANALYSIS</p> <p>5 VALVE DESIGN PROCEDURE AND CHART</p> <p>6 CONCLUSIONS</p> <p>Chapter 17: Simulation of the flow through automatic valves of hermetic compressors by the immersed boundary method approach</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 MATHEMATCAL FORMULATION</p> <p>3 NUMERICAL METHOD</p> <p>4 RESULTS AND DISCUSSIONS</p> <p>5 CONCLUSIONS</p> <p>Refrigeration</p> <p>Chapter 18: Theoretical studies of a fixed vane rotary compressor</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 GEOMETRY MODEL</p> <p>3 FORCE ANALYSIS</p> <p>4 THERMODYNAMIC MODEL</p> <p>5 RESULTS AND DISCUSSIONS</p> <p>6 CONCLUSION</p> <p>Chapter 19: Compressors performances with natural and low GWP refrigerants</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 NEW REFRIGERANTS PROPERTIES</p> <p>3 EXPERIMENTAL TESTS</p> <p>4 CONCLUSION</p> <p>Chapter 20: Numerical prediction of turbulent flow and heat transfer in the suction muffler of a small reciprocating compressor</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 EXPERIMENTAL SETUP</p> <p>3 NUMERICAL SOLUTION</p> <p>4 RESULTS AND DISCUSSION</p> <p>5 CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 21: Thermodynamic assessment of an innovative suction muffler for hermetic reciprocating compressors</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 THEORETICAL BACKGROUND</p> <p>3 THE REGENERATIVE HEAT EXCHANGER</p> <p>4 SIMULATION STRATEGY</p> <p>5 SIMULATION RESULTS</p> <p>6 EXPERIMENTAL RESULTS</p> <p>7 CONCLUSION</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 22: Experimental performance of carbon dioxide compressor with parallel compression</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>Subscripts</p> <p>1 INTRODUCTION</p> <p>2 REFRIGERATION SYSTEMS WITH CO2</p> <p>3 RECIPROCATING COMPRESSOR FOR PARALLEL COMPRESSION</p> <p>4 TESTS AND RESULTS</p> <p>5 SYSTEM PERFORMANCE WITH PARALLEL COMPRESSOR</p> <p>6 CONCLUSION</p> <p>Chapter 23: Enhancement of heat transfer rate in fractional horse power condensing unit</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 PROBLEM SET UP</p> <p>3 DESCRITIZATION & BOUNDARY CONDITIONS</p> <p>4 EXPERIMENTAL SETUP</p> <p>5 ANALYTICAL STUDY</p> <p>6 RESULTS AND DISCUSSION</p> <p>7 STRUCTURAL ANALAYSIS</p> <p>8 DESIGN OF EXPERIMENTS</p> <p>9 CONCLUSION</p> <p>Chapter 24: The influence of refrigerant charge on the starting process of a small reciprocating compressor system</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>Greekletters</p> <p>1 INTRODUCTION</p> <p>2 MODELLING</p> <p>3 METHODOLOGY</p> <p>4 RESULTS</p> <p>5 CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 25: An experimental study of performances of bottle cooler using carbon dioxide as refrigerant</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 EXPERIMENTAL SYSTEM</p> <p>3 EXPERIMENTAL RESULTS AND DISCUSSION</p> <p>4 CONCLUSION</p> <p>ACKNOWLEDGEMENT</p> <p>Reciprocating and Variable Speed Compressors</p> <p>Chapter 26: Theoretical and experimental study on stepless capacity control system of reciprocating compressor</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 STEPLESS CAPACITY CONTROL SYSTEM</p> <p>3 THEORETICAL MODELS</p> <p>4 EXPERIMENT RESEARCH</p> <p>5 RESULTS AND DISCUSSION</p> <p>6 CONCLUSIONS</p> <p>ACKNOWLEDGEMENT</p> <p>Chapter 27: Energy saving in drives using ZCT ZVT DC-DC converters, PWM inverters in variable speed compressor applications</p> <p>ABSTRACT</p> <p>INTRODUCTION</p> <p>2 VARIABLE SPEED DRIVE TECHNOLOGY – AC COMPRESSORS</p> <p>3 VARIABLE SPEED DRIVE TECHNOLOGY: ZCTF PWM DC CONVERTER-DC COMPRESSORS DRIVES</p> <p>4 TIME INTERVALS FOR ZCTF PWM TECHNIQUE</p> <p>5 CONSIDERATIONS</p> <p>6 ENERGY CONSUMPTION AND CO2 EMISSION</p> <p>7 CONCLUSIONS</p> <p>Chapter 28: Modal and vibration analysis of reciprocating compressor crankshaft system</p> <p>ABSTRACT</p> <p>NOTATION</p> <p>1 INTRODUCTION</p> <p>2 MODELING</p> <p>3 ANALYSIS</p> <p>4 APPLICATION</p> <p>5 CONCLUSION</p> <p>6. ACKNOWLEDGEMENT</p> <p>Chapter 29: The design, manufacture and system integration of the control system for the Bu Attifel low pressure gas transmission compressors</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 DOCUMENTATION</p> <p>3 CONTROL SYSTEM DESIGN</p> <p>4 MANUFACTURING RESTRICTIONS</p> <p>5 CONTROL SYSTEM TESTING</p> <p>Manufacturing</p> <p>Chapter 30: The use of a unique tool for manufacturing screw compressor rotors of varying configuration, centre distance and helix angle</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 PROFILE GENERATION FROM A RACK</p> <p>3 A UNIQUE RACK AS A BASIS FOR CALCULATION OF DIFFERENT PROFILES</p> <p>4 CALCULATION OF THE PROFILES BASED ON THEIR ORIGINAL RACKS</p> <p>5 PERFORMANCE CALCULATION</p> <p>6 CONCLUSION</p> <p>Chapter 31: Method for the correction of localised lead errors during screw rotor manufacture using CNC grinding machines</p> <p>ABSTRACT</p> <p>NOTATION</p> <p>1 INTRODUCTION</p> <p>2 CALCULATION OF WORK ROTATION ADJUSTMENTS</p> <p>3 TESTING AND ANALYSIS OF RESULTS</p> <p>4 CONCLUSIONS</p> <p>Chapter 32: Developments in the productive grinding of screw rotors and other helical parts in response to user feedback</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 CHANGING MARKET REQUIREMENTS</p> <p>3 DESIGN FEATURES</p> <p>4 SUMMARY AND CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Screw Compressors</p> <p>Chapter 33: Evaluation of various turbulence models in predicting screw compressor flow processes by CFD</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 CFD ANALYSIS OF SCREW COMPRESSOR</p> <p>3 EVALUATION OF RESULTS</p> <p>4 CONCLUSIONS</p> <p>Chapter 34: Experimental and theoretical investigation of screw machines as vacuum blowers</p> <p>ABSTRACT</p> <p>SYMBOLS</p> <p>1 INTRODUCTION</p> <p>2 THE SCREW VACUUM PUMP</p> <p>3 EXPERIMENTAL INVESTIGATION</p> <p>4 THEORETICAL INVESTIGATIONS</p> <p>5 SUMMARY</p> <p>Chapter 35: Numerical optimization of an injection volumetric expander for use in waste heat recovery organic Rankine cycle</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 CONFIGURATION</p> <p>3 EXPANDER INLET EXERGY FLOW RATE</p> <p>4 VAPOUR INJECTION EXPANDER</p> <p>4.3 Injection port position</p> <p>5 CONCLUSION</p> <p>Chapter 36: Fluid dynamic and thermodynamic modelling of multiphase screw pumps, operating on the threshold of an exclusive gas compression</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 CHAMBER-BASED SCREW PUMP MODEL</p> <p>3 MODELLING OF MULTIPHASE GAP FLOWS</p> <p>4 MODELLING OF HEAT TRANSFER AND HEAT CONDUCTION</p> <p>5 EXPERIMENTAL APPARATUS</p> <p>6 EXPERIMENTAL AND THEORETICAL RESULTS</p> <p>CONCLUSIONS</p> <p>ACKNOWLEDGEMENTS</p> <p>Chapter 37: Consideration of clearances in the design of screw compressor rotors</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 OPERATIONAL CLEARANCES</p> <p>3 MEASURING OPERATIONAL CLEARANCES</p> <p>4 PERFORMANCE PREDICTION</p> <p>5 APPLICATION TO DIFFERENT WORKING FLUIDS</p> <p>CONCLUSIONS</p> <p>Chapter 38: Performance prediction methods for screw compressors</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>Greek Characters</p> <p>Abbreviations</p> <p>1 INTRODUCTION</p> <p>2 PERFORMANCE CHARACTERISTICS</p> <p>3 PERFORMANCE PREDICTION METHODS</p> <p>4 COMPARISON OF DIFFERENT METHODS</p> <p>CONCLUSIONS</p> <p>Chapter 39: Rotor enhancement for improved screw compressor performance</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 ROTOR ENHANCEMENT</p> <p>3 DISCUSSION OF RESULTS</p> <p>4 CONCLUSION</p> <p>ACKNOWLEDGEMENT</p> <p>Chapter 40: Reduction of pressure loss in suction flow passage of oil flooded screw compressors</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 PRESSURE LOSS FACTORS IN SUCTION FLOW PASSAGE</p> <p>3 VISCOUS FRICTION</p> <p>4 INTERFERENCE OF SUCTION AIR AND LUBRICANT OIL</p> <p>5 APPLICATION OF IMPROVED GEOMETRY TO ACTUAL COMPRESSOR</p> <p>6 CONCLUSION</p> <p>Chapter 41: A new approach to three-dimensional intermesh clearance calculation</p> <p>Astract:</p> <p>1 INTRODUCTION</p> <p>2 STATE OF THE ART</p> <p>3 SURFACE REPRESENTATION OF ROTORS USING NURBS</p> <p>4 CALCULATION OF THE LINE OF ACTION</p> <p>5 APPLICATION AND COMPARISON</p> <p>Chapter 42: Improvement of volumetric efficiency for screw compressors using inertial charging</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 COMPRESSOR STRUCTURE</p> <p>3 MODELLING AND CFD ENVIRONMENTS</p> <p>4 CFD SIMULATION RESULTS</p> <p>5 EXPERIMENTAL VERIFICATION</p> <p>6 CONCLUSION</p> <p>ACKNOWLEDGEMENT</p> <p>Scroll and Turbo Compressors</p> <p>Chapter 43: Development of high efficiency scroll compressor</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 STRUCTURE OF SCROLL COMPRESSOR</p> <p>3 COMPRESSOR EFFICIENCY IN RESPONSE TO OIL SUPPLY</p> <p>4 NEW VALVE SYSTEM TO REDUCE OVER-COMPRESSION</p> <p>5 CONCLUSION</p> <p>Chapter 44: Scroll compressors and intermediate valve ports</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 BENEFIT OF IDV'S INTERNAL LOADS</p> <p>3 IMPACT ON THE OLDHAM COUPLING</p> <p>4 CONCLUSION</p> <p>Rotary Compressors</p> <p>Chapter 45: Design limitations and flexibilities of the revolving vane compressor</p> <p>ABSTRACT</p> <p>NOMENCLATURE</p> <p>1 INTRODUCTION</p> <p>2 ECCENTRICITY</p> <p>3 VANE SLOT GEOMETRY</p> <p>4 COMPRESSOR COMPONENTS DESIGN</p> <p>5 CONCLUSIONS</p> <p>Chapter 46: The Blade Compressor™: geometry, performance and applications</p> <p>ABSTRACT</p> <p>1 INTRODUCTION</p> <p>2 THE PROBLEM WITH COMPRESSORS</p> <p>2.2.7 Conclusion</p> <p>3 THE BLADE COMPRESSOR™ SOLUTION</p> <p>4 CONCEPTUAL ADVANTAGES TO THE BLADE COMPRESSOR™</p> <p>4.5.1 Conclusion</p> <p>5 CURRENT TECHNOLOGY STATUS</p> <p>6 PERFORMANCE AND RESULTS AGAINST CORE CRITERIA</p> <p>7 COMMERCIAL OPPORTUNITIES, IP AND FUTURE ROADMAP</p> <p>8 CONCLUSION</p> <p>Author Index</p>