Modern Dimension Reduction

Specificaties
Paperback, 75 blz. | Engels
Cambridge University Press | 1e druk, 2021
ISBN13: 9781108986892
Rubricering
Hoofdrubriek : Computer en informatica
Cambridge University Press 1e druk, 2021 9781108986892
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable.

This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders.

The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.

Specificaties

ISBN13:9781108986892
Taal:Engels
Bindwijze:paperback
Aantal pagina's:75
Druk:1
Verschijningsdatum:5-8-2021

Inhoudsopgave

1. Introduction
2. A Classic Approach to Dimension Reduction
3. Locally Linear Embedding
4. Nonlinear Dimension Reduction for Visualization
5. Neural Network-Based Approaches
6. Final Thoughts on Dimension Reduction.

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Modern Dimension Reduction