R All–in–One For Dummies
Samenvatting
A deep dive into the programming language of choice for statistics and data
With R All-in-One For Dummies, you get five mini-books in one, offering a complete and thorough resource on the R programming language and a road map for making sense of the sea of data we’re all swimming in. Maybe you’re pursuing a career in data science, maybe you’re looking to infuse a little statistics know-how into your existing career, or maybe you’re just R-curious. This book has your back. Along with providing an overview of coding in R and how to work with the language, this book delves into the types of projects and applications R programmers tend to tackle the most. You’ll find coverage of statistical analysis, machine learning, and data management with R.
- Grasp the basics of the R programming language and write your first lines of code
- Understand how R programmers use code to analyze data and perform statistical analysis
- Use R to create data visualizations and machine learning programs
- Work through sample projects to hone your R coding skill
This is an excellent all-in-one resource for beginning coders who'd like to move into the data space by knowing more about R.
Specificaties
Inhoudsopgave
Book 1: Introducing R 5
CHAPTER 1: R: What It Does and How It Does It 7
CHAPTER 2: Working with Packages, Importing, and Exporting 37
Book 2: Describing Data 51
CHAPTER 1: Getting Graphic 53
CHAPTER 2: Finding Your Center 93
CHAPTER 3: Deviating from the Average 103
CHAPTER 4: Meeting Standards and Standings 113
CHAPTER 5: Summarizing It All 125
CHAPTER 6: What’s Normal? 145
Book 3: Analyzing Data 163
CHAPTER 1: The Confidence Game: Estimation 165
CHAPTER 2: One-Sample Hypothesis Testing 181
CHAPTER 3: Two-Sample Hypothesis Testing 207
CHAPTER 4: Testing More than Two Samples 233
CHAPTER 5: More Complicated Testing 257
CHAPTER 6: Regression: Linear, Multiple, and the General Linear Model 279
CHAPTER 7: Correlation: The Rise and Fall of Relationships 315
CHAPTER 8: Curvilinear Regression: When Relationships Get Complicated 335
CHAPTER 9: In Due Time 359
CHAPTER 10: Non-Parametric Statistics 371
CHAPTER 11: Introducing Probability 393
CHAPTER 12: Probability Meets Regression: Logistic Regression 415
Book 4: Learning from Data 423
CHAPTER 1: Tools and Data for Machine Learning Projects 425
CHAPTER 2: Decisions, Decisions, Decisions 449
CHAPTER 3: Into the Forest, Randomly 467
CHAPTER 4: Support Your Local Vector 483
CHAPTER 5: K-Means Clustering 503
CHAPTER 6: Neural Networks 519
CHAPTER 7: Exploring Marketing 537
CHAPTER 8: From the City That Never Sleeps 557
Book 5: Harnessing R: Some Projects to Keep You Busy 573
CHAPTER 1: Working with a Browser 575
CHAPTER 2: Dashboards — How Dashing! 603
Index 639
Anderen die dit boek kochten, kochten ook
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht