

Joseph Adler has many years of experience in data mining and data analysis at companies including DoubleClick, American Express, and VeriSign.
Meer over Joseph AdlerR in a Nutshell
A Desktop Quick Reference
Samenvatting
If you're considering R for statistical computing and data visualization, this book provides a quick and practical guide to just about everything you can do with the open source R language and software environment. You'll learn how to write R functions and use R packages to help you prepare, visualize, and analyze data. Author Joseph Adler illustrates each process with a wealth of examples from medicine, business, and sports.
Updated for R 2.14 and 2.15, this second edition includes new and expanded chapters on R performance, the ggplot2 data visualization package, and parallel R computing with Hadoop.
- Get started quickly with an R tutorial and hundreds of examples
- Explore R syntax, objects, and other language details
- Find thousands of user-contributed R packages online, including Bioconductor
- Learn how to use R to prepare data for analysis
- Visualize your data with R's graphics, lattice, and ggplot2 packages
- Use R to calculate statistical fests, fit models, and compute probability distributions
- Speed up intensive computations by writing parallel R programs for Hadoop
- Get a complete desktop reference to R
Specificaties
Inhoudsopgave
Part 1: R Basics
1. Getting and Installing R
-R Versions
-Getting and Installing Interactive R Binaries
2. The R User Interface
-The R Graphical User Interface
-The R Console
-Batch Mode
-Using R Inside Microsoft Excel
-RStudio
-Other Ways to Run R
3. A Short R Tutorial
-Basic Operations in R
-Functions
-Variables
-Introduction to Data Structures
-Objects and Classes
-Models and Formulas
-Charts and Graphics
-Getting Help
4. R Packages
-An Overview of Packages
-Listing Packages in Local Libraries
-Loading Packages
-Exploring Package Repositories
-Installing Packages From Other Repositories
-Custom Packages
Part 2: The R Language
5. An Overview of the R Language
-Expressions
-Objects
-Symbols
-Functions
-Objects Are Copied in Assignment Statements
-Everything in R Is an Object
-Special Values
-Coercion
-The R Interpreter
-Seeing How R Works
6. R Syntax
-Constants
-Operators
-Expressions
-Control Structures
-Accessing Data Structures
-R Code Style Standards
7. R Objects
-Primitive Object Types
-Vectors
-Lists
-Other Objects
-Attributes
8. Symbols and Environments
-Symbols
-Working with Environments
-The Global Environment
-Environments and Functions
-Exceptions
9. Functions
-The Function Keyword
-Arguments
-Return Values
-Functions as Arguments
-Argument Order and Named Arguments
-Side Effects
10. Object-Oriented Programming
-Overview of Object-Oriented Programming in R
-Object-Oriented Programming in R: S4 Classes
-Old-School OOP in R: S3
Part 3: Working with Data
11. Saving, Loading, and Editing Data
-Entering Data Within R
-Saving and Loading R Objects
-Importing Data from External Files
-Exporting Data
-Importing Data From Databases
-Getting Data from Hadoop
12. Preparing Data
-Combining Data Sets
-Transformations
-Binning Data
-Subsets
-Summarizing Functions
-Data Cleaning
-Finding and Removing Duplicates
-Sorting
Part 4: Data Visualization
13. Graphics
-An Overview of R Graphics
-Graphics Devices
-Customizing Charts
14. Lattice Graphics
-History
-An Overview of the Lattice Package
-High-Level Lattice Plotting Functions
-Customizing Lattice Graphics
-Low-Level Functions
15. ggplot2
-A Short Introduction
-The Grammar of Graphics
-A More Complex Example: Medicare Data
-Quick Plot
-Creating Graphics with ggplot2
-Learning More
Part 5: Statistics with R
16. Analyzing Data
-Summary Statistics
-Correlation and Covariance
-Principal Components Analysis
-Factor Analysis
-Bootstrap Resampling
17. Probability Distributions
-Normal Distribution
-Common Distribution-Type Arguments
-Distribution Function Families
18. Statistical Tests
-Continuous Data
-Discrete Data
19. Power Tests
-Experimental Design Example
-t-Test Design
-Proportion Test Design
-ANOVA Test Design
20. Regression Models
-Example: A Simple Linear Model
-Details About the lm Function
-Subset Selection and Shrinkage Methods
-Nonlinear Models
-Survival Models
-Smoothing
-Machine Learning Algorithms for Regression
21. Classification Models
-Linear Classification Models
-Machine Learning Algorithms for Classification
22. Machine Learning
-Market Basket Analysis
-Clustering
23. Time Series Analysis
-Autocorrelation Functions
-Time Series Models
Part 6: Additional Topics
24. Optimizing R Programs
-Measuring R Program Performance
-Optimizing Your R Code
-Other Ways to Speed Up R
25. Bioconductor
-An Example
-Key Bioconductor Packages
-Data Structures
-Where to Go Next
26. R and Hadoop
-R and Hadoop
-Other Packages for Parallel Computation with R
-Where to Learn More
Appendix: R Reference
Bibliography
Index
Anderen die dit boek kochten, kochten ook
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht