Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Big Data Glossary

Specificaties
Paperback, 60 blz. | Engels
John Wiley & Sons | e druk, 2011
ISBN13: 9781449314590
Rubricering
Juridisch :
John Wiley & Sons e druk, 2011 9781449314590
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

To help you navigate the large number of new data tools available, this guide describes 60 of the most recent innovations, from NoSQL databases and MapReduce approaches to machine learning and visualization tools. Descriptions are based on first-hand experience with these tools in a production environment.

This handy glossary also includes a chapter of key terms that help define many of these tool categories:NoSQL Databases—Document-oriented databases using a key/value interface rather than SQLMapReduce—Tools that support distributed computing on large datasetsStorage—Technologies for storing data in a distributed wayServers—Ways to rent computing power on remote machinesProcessing—Tools for extracting valuable information from large datasetsNatural Language Processing—Methods for extracting information from human-created textMachine Learning—Tools that automatically perform data analyses, based on results of a one-off analysisVisualization—Applications that present meaningful data graphicallyAcquisition—Techniques for cleaning up messy public data sourcesSerialization—Methods to convert data structure or object state into a storable format

Specificaties

ISBN13:9781449314590
Taal:Engels
Bindwijze:paperback
Aantal pagina's:60

Inhoudsopgave

Preface;
Conventions Used in This Book;
Using Code Examples;
Safari® Books Online;
How to Contact Us;
Chapter 1: Terms;
1.1 Document-Oriented;
1.2 Key/Value Stores;
1.3 Horizontal or Vertical Scaling;
1.4 MapReduce;
1.5 Sharding;
Chapter 2: NoSQL Databases;
2.1 MongoDB;
2.2 CouchDB;
2.3 Cassandra;
2.4 Redis;
2.5 BigTable;
2.6 HBase;
2.7 Hypertable;
2.8 Voldemort;
2.9 Riak;
2.10 ZooKeeper;
Chapter 3: MapReduce;
3.1 Hadoop;
3.2 Hive;
3.3 Pig;
3.4 Cascading;
3.5 Cascalog;
3.6 mrjob;
3.7 Caffeine;
3.8 S4;
3.9 MapR;
3.10 Acunu;
3.11 Flume;
3.12 Kafka;
3.13 Azkaban;
3.14 Oozie;
3.15 Greenplum;
Chapter 4: Storage;
4.1 S3;
4.2 Hadoop Distributed File System;
Chapter 5: Servers;
5.1 EC2;
5.2 Google App Engine;
5.3 Elastic Beanstalk;
5.4 Heroku;
Chapter 6: Processing;
6.1 R;
6.2 Yahoo! Pipes;
6.3 Mechanical Turk;
6.4 Solr/Lucene;
6.5 ElasticSearch;
6.6 Datameer;
6.7 BigSheets;
6.8 Tinkerpop;
Chapter 7: NLP;
7.1 Natural Language Toolkit;
7.2 OpenNLP;
7.3 Boilerpipe;
7.4 OpenCalais;
Chapter 8: Machine Learning;
8.1 WEKA;
8.2 Mahout;
8.3 scikits.learn;
Chapter 9: Visualization;
9.1 Gephi;
9.2 GraphViz;
9.3 Processing;
9.4 Protovis;
9.5 Fusion Tables;
9.6 Tableau;
Chapter 10: Acquisition;
10.1 Google Refine;
10.2 Needlebase;
10.3 ScraperWiki;
Chapter 11: Serialization;
11.1 JSON;
11.2 BSON;
11.3 Thrift;
11.4 Avro;
11.5 Protocol Buffers;

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Big Data Glossary