Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Practical Machine Learning with H20

Powerful, Scalable Techniques for Deep Learning and AI

Specificaties
Paperback, 282 blz. | Engels
O'Reilly | 1e druk, 2016
ISBN13: 9781491964606
Rubricering
Hoofdrubriek : Computer en informatica
Juridisch :
O'Reilly 1e druk, 2016 9781491964606
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that’s easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

If you’re familiar with R or Python, know a bit of statistics, and have some experience manipulating data, author Darren Cook will take you through H2O basics and help you conduct machine-learning experiments on different sample data sets. You’ll explore several modern machine-learning techniques such as deep learning, random forests, unsupervised learning, and ensemble learning.

- Learn how to import, manipulate, and export data with H2O
- Explore key machine-learning concepts, such as cross-validation and validation data sets
- Work with three diverse data sets, including a regression, a multinomial classification, and a binomial classification
- Use H2O to analyze each sample data set with four supervised machine-learning algorithms
- Understand how cluster analysis and other unsupervised machine-learning algorithms work

Specificaties

ISBN13:9781491964606
Trefwoorden:machine learning, H2O
Taal:Engels
Bindwijze:paperback
Aantal pagina's:282
Uitgever:O'Reilly
Druk:1
Verschijningsdatum:31-12-2016
Hoofdrubriek:IT-management / ICT

Inhoudsopgave

PREFACE

1. INSTALLATION AND QUICK-START
-PREPARING TO INSTALL
-INSTALL H2O WITH R (CRAN)
-INSTALL H2O WITH PYTHON (PIP)
-OUR FIRST LEARNING
-FLOW
-SUMMARY

2. DATA IMPORT, DATA EXPORT
-MEMORY REQUIREMENTS
-PREPARING THE DATA
-GETTING DATA INTO H2O
-DATA MANIPULATION
-GETTING DATA OUT OF H2O
-SUMMARY

3. THE DATA SETS
-DATA SET: BUILDING ENERGY EFFICIENCY
-DATA SET: HANDWRITTEN DIGITS
-DATA SET: FOOTBALL SCORES
-SUMMARY

4. COMMON MODEL PARAMETERS
-SUPPORTED METRICS
-THE ESSENTIALS
-EFFORT
-SCORING AND VALIDATION
-EARLY STOPPING
-CHECKPOINTS
-CROSS-VALIDATION (AKA K-FOLDS)
-DATA WEIGHTING
-SAMPLING, GENERALIZING
-REGRESSION
-OUTPUT CONTROL
-SUMMARY

5. RANDOM FOREST
-DECISION TREES
-RANDOM FOREST
-PARAMETERS
-BUILDING ENERGY EFFICIENCY: DEFAULT RANDOM FOREST
-GRID SEARCH
-BUILDING ENERGY EFFICIENCY: TUNED RANDOM FOREST
-MNIST: DEFAULT RANDOM FOREST
-MNIST: TUNED RANDOM FOREST
-FOOTBALL: DEFAULT RANDOM FOREST
-FOOTBALL: TUNED RANDOM FOREST
-SUMMARY

6. GRADIENT BOOSTING MACHINES
-BOOSTING
-THE GOOD, THE BAD, AND… THE MYSTERIOUS
-PARAMETERS
-BUILDING ENERGY EFFICIENCY: DEFAULT GBM
-BUILDING ENERGY EFFICIENCY: TUNED GBM
-MNIST: DEFAULT GBM
-MNIST: TUNED GBM
-FOOTBALL: DEFAULT GBM
-FOOTBALL: TUNED GBM
-SUMMARY

7. LINEAR MODELS
-GLM PARAMETERS
-BUILDING ENERGY EFFICIENCY: DEFAULT GLM
-BUILDING ENERGY EFFICIENCY: TUNED GLM
-MNIST: DEFAULT GLM
-MNIST: TUNED GLM
-FOOTBALL: DEFAULT GLM
-FOOTBALL: TUNED GLM
-SUMMARY

8. DEEP LEARNING (NEURAL NETS)
-WHAT ARE NEURAL NETS?
-PARAMETERS
-BUILDING ENERGY EFFICIENCY: DEFAULT DEEP LEARNING
-BUILDING ENERGY EFFICIENCY: TUNED DEEP LEARNING
-MNIST: DEFAULT DEEP LEARNING
-MNIST: TUNED DEEP LEARNING
-FOOTBALL: DEFAULT DEEP LEARNING
-FOOTBALL: TUNED DEEP LEARNING
-SUMMARY
-APPENDIX: MORE DEEP LEARNING PARAMETERS

9. UNSUPERVISED LEARNING
-K-MEANS CLUSTERING
-DEEP LEARNING AUTO-ENCODER
-PRINCIPAL COMPONENT ANALYSIS
-GLRM
-MISSING DATA
-SUMMARY

10. EVERYTHING ELSE
-STAYING ON TOP OF AND POKING INTO THINGS
-INSTALLING THE LATEST VERSION
-RUNNING FROM THE COMMAND LINE
-CLUSTERS
-SPARK / SPARKLING WATER
-NAIVE BAYES
-ENSEMBLES
-SUMMARY

11. EPILOGUE: DIDN’T THEY ALL DO WELL!
-BUILDING ENERGY RESULTS
-MNIST RESULTS
-FOOTBALL DATA
-HOW LOW CAN YOU GO?
-SUMMARY

INDEX

Net verschenen

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Practical Machine Learning with H20