Mechanical Characterization of Materials and Wave Dispersion V 2
Instrumentation and Experiment Interpretation
Samenvatting
Over the last 50 years, the methods of investigating dynamic properties have resulted in significant advances. This book explores dynamic testing, the methods used, and the experiments performed, placing a particular emphasis on the context of bounded medium elastodynamics. Dynamic tests have proven to be as efficient as static tests and are often easier to use at lower frequency. The discussion is divided into four parts. Part A focuses on the complements of continuum mechanics. Part B concerns the various types of rod vibrations: extensional, bending, and torsional. Part C is devoted to mechanical and electronic instrumentation, and guidelines for which experimental set–up should be used are given. Part D concentrates on experiments and experimental interpretations of elastic or viscolelastic moduli. In addition, several chapters contain practical examples alongside theoretical discussion to facilitate the readers understanding. The results presented are the culmination of over 30 years of research by the authors and as such will be of great interest to anyone involved in this field.
Specificaties
Inhoudsopgave
<p>Acknowledgements xxxi</p>
<p>PART I – MECHANICAL AND ELECTRONIC INSTRUMENTATION 1</p>
<p>Chapter 1. Guidelines for Choosing the Experimental Set–up 3<br /> Jean Tuong VINH</p>
<p>1.1. Choice of matrix coefficient to be evaluated and type of wave to be adopted 4</p>
<p>1.2. Influence of frequency range 8</p>
<p>1.3. Dimensions and shape of the samples 9</p>
<p>1.4. Tests at high and low temperature 10</p>
<p>1.5. Sample holder at high temperature 10</p>
<p>1.6. Visual observation inside the ambient room 11</p>
<p>1.7. Complex moduli of viscoelastic materials and damping capacity measurements 11</p>
<p>1.8. Previsional calculation of composite materials 11</p>
<p>1.9. Bibliography 11</p>
<p>Chapter 2. Review of Industrial Analyzers for Material Characterization 13<br /> Jean Tuong VINH</p>
<p>2.1. Rheovibron and its successive versions 14</p>
<p>2.2. Dynamic mechanical analyzer DMA 01dB Metravib and VHF 104 Metravib analyzer 17</p>
<p>2.3. Bruel and Kjaer complex modulus apparatus (Oberst Apparatus) 18</p>
<p>2.4. Dynamic mechanical analyzer DMA Dupont de Nemours 980 20</p>
<p>2.5. Elasticimeter using progressive wave PPM 5 22</p>
<p>2.6. Bibliography 24</p>
<p>Chapter 3. Mechanical Part of the Vibration Test Bench 25<br /> Jean Tuong VINH</p>
<p>3.1. Clamping end 25</p>
<p>3.2. Length correction 29</p>
<p>3.3. Supported end 33</p>
<p>3.4. Additional weight or additional torsion lever used as a boundary condition 34</p>
<p>3.5. Free end 34</p>
<p>3.6. Pseudo–clamping sample attachment 35</p>
<p>3.7. Sample suspended by taut threads 38</p>
<p>3.8. Sample on foam rubber plate serving as a mattress 41</p>
<p>3.9. Climatic chamber 41</p>
<p>3.10. Vacuum system 41</p>
<p>3.11. Bibliography 42</p>
<p>Chapter 4. Exciters and Excitation Signals 43<br /> Jean Tuong VINH</p>
<p>4.1. Frequency ranges 43</p>
<p>4.2. Power 43</p>
<p>4.3. Nature and performance of various exciters 44</p>
<p>4.4. Room required for exciter installation 47</p>
<p>4.5. Details for electrodynamic shakers 48</p>
<p>4.6. Low cost electromagnetic exciters with permanent magnet 54</p>
<p>4.7. Piezoelectric and ferroelectric exciters 55</p>
<p>4.8. Design of special ferroelectric transducers 67</p>
<p>4.9. Power piezoelectric exciters 69</p>
<p>4.10. Technical details concerning ultrasonic emitters for the measurement of material stiffness coefficients on ultrasonic test benches 70</p>
<p>4.11. Bibliography 74</p>
<p>4.12. Appendix 4A. Example of ferroelectric plates and disks 74</p>
<p>Chapter 5. Transducers 77<br /> Jean Tuong VINH and Michel NUGUES</p>
<p>5.1. Introduction 77</p>
<p>5.2. Transducers and their principal performance 78</p>
<p>5.3. The main classes of fixed reference transducers 79</p>
<p>5.4. Condenser–type transducer 82</p>
<p>5.5. Inductance transducers 89</p>
<p>5.6. Mutual inductance transducer 92</p>
<p>5.7. Differential transformer transducer 93</p>
<p>5.8. Contactless inductance transducer with a permanent magnet 93</p>
<p>5.9. Eddy current transducer 94</p>
<p>5.10. Seismic transducers 97</p>
<p>5.11. Piezoresistive accelerometer 109</p>
<p>5.12. Other transducers 110</p>
<p>5.13. Force transducers 111</p>
<p>5.14. Bibliography 113</p>
<p>5.15. Appendix 5A. Condenser with polarization 113</p>
<p>5.16. Appendix 5B. Eigenfrequencies of some force transducers: Rayleigh and Rayleigh–Ritz upper bound methods 115</p>
<p>5B.1. Rayleigh s method 116</p>
<p>5B.2. Rayleigh–Ritz s method 117</p>
<p>5B.3. Preliminary experimental test on the force transducer 117</p>
<p>Chapter 6. Electronic Instrumentation, Connecting Cautions and Signal Processing 119<br /> Jean Tuong VINH</p>
<p>6.1. Preamplifiers and signal conditioners following the transducers 120</p>
<p>6.2. Cables and wiring considerations 121</p>
<p>6.3. Transducer selection and mountings 123</p>
<p>6.4. Transducer calibration 129</p>
<p>6.5. Digital signal processing systems: an overview 133</p>
<p>6.6. Other signal processing programs 141</p>
<p>6.7. Reasoned choice of excitation signals 142</p>
<p>6.8. Bibliography 146</p>
<p>6.9. Appendix 6A. The Shannon theorem and aliasing phenomenon 147</p>
<p>6.10. Appendix 6B. Time window (or weighting function)150</p>
<p>6B.1. Kaiser–Bessel window 151</p>
<p>6B.2. Hamming window 152</p>
<p>Chapter 7. The Frequency Hilbert Transform and Detection of Hidden Non–linearities in Frequency Responses 155<br /> Jean Tuong VINH</p>
<p>7.1. Introduction 155</p>
<p>7.2. Mathematical expression of the Hilbert transform 157</p>
<p>7.3. Kramer–Kronig s relationships 162</p>
<p>7.4. Causal signal and Fourier transform 163</p>
<p>7.5. Hilbert transform of a truncated transfer function 164</p>
<p>7.6. Impulse response of a system. Non–causality due to measurement defects 172</p>
<p>7.7. Summary of principal result in sections 7.5 and 7.6 174</p>
<p>7.8. Causalized Hilbert transform 175</p>
<p>7.9. Some practical aspects of Hilbert transform computation 176</p>
<p>7.10. Conclusion 181</p>
<p>7.11. Bibliography 181</p>
<p>7.12. Appendix 7A. Line integral of complex function and Cauchy s integral 182</p>
<p>7A.1. Analyticity of a function f(z) of complex variable z 182</p>
<p>7A.2. Expression of Cauchy s integral of the function f(z)/(z– 183</p>
<p>7.13. Appendix 7B. Hilbert transform obtained directly by Guillemin s method 184</p>
<p>Chapter 8. Measurement of Structural Damping 187<br /> Jean Tuong VINH</p>
<p>8.1. Introduction 187</p>
<p>8.2. Overview of various methods used to evaluate damping ratios in structural dynamics 190</p>
<p>8.3. Measurement of structural damping coefficient by multimodal analysis 197</p>
<p>8.4. The Hilbert envelope time domain method 201</p>
<p>8.5. Detection of hidden non–linearities 203</p>
<p>8.6. How to relate material damping to structural damping? 203</p>
<p>8.7. Concluding remarks 207</p>
<p>8.8. Bibliography 208</p>
<p>PART II – REALIZATION OF EXPERIMENTAL SET–UPS AND INTERPRETATION OF MEASUREMENTS 209</p>
<p>Chapter 9. Torsion Test Benches: Instrumentation and Experimental Results 211<br /> Michel NUGUES</p>
<p>9.1. Introduction 211</p>
<p>9.2. Industrial torsion test bench 211</p>
<p>9.3. Parasitic bending vibration of rod 215</p>
<p>9.4. Shear moduli of transverse isotropic materials 215</p>
<p>9.5. Elastic moduli obtained for various materials 220</p>
<p>9.6. Experimental set–up to obtain dispersion curves in a large frequency range 222</p>
<p>9.7. Experimental results obtained on short samples 224</p>
<p>9.8. Experimental wave dispersion curves obtained by torsional vibrations of a rod with rectangular cross–section 227</p>
<p>9.9. Frequency spectrum for isotropic metallic materials (aluminum and steel alloy) 230</p>
<p>9.10. Impact test on viscoelastic high damping material 232</p>
<p>9.11. Concluding remarks 238</p>
<p>9.12. Bibliography 239</p>
<p>9.13. Appendix 9A. Choice of equations of motion 240</p>
<p>9A.1. Circular cross–section 240</p>
<p>9A.2. Square cross–section 241</p>
<p>9A.3. Rectangular cross–section 241</p>
<p>9A.4. Ratio of Young s modulus to shear modulus 241</p>
<p>9A.5. Special experimental studies of wave dispersion phenomenon 242</p>
<p>9.14. Appendix 9B. Complementary information concerning formulae used to interpret torsion tests 242</p>
<p>9B.1. Quick overview of Saint Venant s theory applied to the problem of dynamic Torsion 242</p>
<p>9.15. Appendix 9C. Details concerning the (c) function in the calculation of rod stiffness<br /> CT 245</p>
<p>9.16. Appendix 9D. Compliments concerning the solution of equations of motion with first order theory 246</p>
<p>9D.1. Displacement field 246</p>
<p>9D.2. Relations between two sets of coefficients 246</p>
<p>9D.3. Equations giving the two sets of coefficients Aa, Ba, Ca, Da deduced from the four boundary conditions 248</p>
<p>9D.4. Evaluation of coefficients in [9D.6] 248</p>
<p>9D.5. Equations in Aa, Ba, Ca, Da deduced from the four boundary conditions 249</p>
<p>Chapter 10. Bending Vibration of Rod Instrumentation and Measurements 255<br /> Dominique LE NIZHERY</p>
<p>10.1. Introduction 255</p>
<p>10.2. Realization of an elasticimeter 255</p>
<p>10.3. How to conduct bending tests 262</p>
<p>10.4. Concluding remarks 267</p>
<p>10.5 Bibliography 268</p>
<p>10.6. Appendix 10A. Useful formulae to evaluate the Young s modulus by bending vibration of rods 268</p>
<p>10A.1. Bernoulli–Euler s equation 268</p>
<p>10A.2. Timoshenko–Mindlin s equation 269</p>
<p>10A.3. Boundary conditions and wave number equation 269</p>
<p>10A.4. Important parameters in rod bending vibration 269</p>
<p>10A.5. Expression of the wave number 270</p>
<p>10A.6. Young s modulus (Bernoulli s theory) 270</p>
<p>10A.7. Young s modulus (Timoshenko–Mindlin s equation) 270</p>
<p>Chapter 11. Longitudinal Vibrations of Rods: Material Characterization and Experimental Dispersion Curves 271<br /> Yvon CHEVALIER and Jean Tuong VINH</p>
<p>11.1. Introduction 271</p>
<p>11.2. Mechanical set–up 272</p>
<p>11.3. Electronic set–up 272</p>
<p>11.4. Estimation of phase velocity 274</p>
<p>11.5. Short samples and eigenvalue calculations for various materials 280</p>
<p>11.6. Experimental results interpreted by the two theories 283</p>
<p>11.7. Influence of slenderness ( L = 2L/h) on eigenfrequency 291</p>
<p>11.8. Experimental results obtained with short rod 292</p>
<p>11.9. Concluding remarks 292</p>
<p>11.10. Bibliography 295</p>
<p>11.11. Appendix 11A. Eigenvalue equation for rod of finite length 296</p>
<p>11.12. Appendix 11B. Additional information concerning solutions of Touratier s equations 300</p>
<p>11B.1. Eigenequation with elementary theory of motion 301</p>
<p>Chapter 12. Realization of Le Rolland–Sorin s Double Pendulum and Some Experimental Results 305<br /> Mostefa ARCHI and Jean–Baptiste CASIMIR</p>
<p>12.1. Introduction 305</p>
<p>12.2. Principal mechanical parts of the double pendulum system 305</p>
<p>12.3. Instrumentation 312</p>
<p>12.4. Experimental precautions 315</p>
<p>12.5. Details and characteristics of the elasticimeter 317</p>
<p>12.6. Some experimental results 318</p>
<p>12.7. Damping ratio estimation by logarithmic decrement method 322</p>
<p>12.8. Concluding remarks 324</p>
<p>12.9. Bibliography 325</p>
<p>12.10. Appendix 12A. Equations of motion for the set (pendulums, platform and sample) and Young s modulus calculation deduced from bending tests 326</p>
<p>12A.1. Equations of motion 326</p>
<p>12A.2. Solutions for pendulum oscillations 328</p>
<p>12A.3. Relationship between beating period and sample stiffness k 329</p>
<p>12A.4. Young s modulus calculation 330</p>
<p>12.11. Appendix 12B. Evaluation of shear modulus by torsion tests 331</p>
<p>12B.1. Energy expression 331</p>
<p>Chapter 13. Stationary and Progressive Waves in Rings and Hollow Cylinders 335<br /> Yvon CHEVALIER and Jean Tuong VINH</p>
<p>13.1. Introduction 335</p>
<p>13.2. Choosing the samples based on material symmetry 336</p>
<p>13.3. Practical realization of a special elasticimeter for curved beams and rings: in plane bending vibrations 337</p>
<p>13.4. Ultrasonic benches 342</p>
<p>13.5. Experimental results and interpretation 343</p>
<p>13.6. List of symbols 358</p>
<p>13.7. Bibliography 359</p>
<p>13.8. Appendix 13A. Evaluation of Young s modulus by using in plane bending motion of the ring 359</p>
<p>13.9. Appendix 13B. Determination of inertia moment of a solid by means of a three–string pendulum 360</p>
<p>13B.1. Principle of the method 360</p>
<p>13B.2. Calculations 361</p>
<p>13.10. Appendix 13C. Necessary formulae to evaluate Young s<br /> modulus of a straight beam 364</p>
<p>Chapter 14. Ultrasonic Benches: Characterization of Materials by Wave Propagation Techniques 367<br /> Patrick GARCEAU</p>
<p>14.1. Introduction 367</p>
<p>14.2. Ultrasonic transducers 367</p>
<p>14.3. Pulse generator 369</p>
<p>14.4. Mechanical realization of ultrasonic benches 371</p>
<p>14.5. Experimental interpretation of phase velocity and group velocity 375</p>
<p>14.6. Some experimental results on composite materials 380</p>
<p>14.7. Viscoelastic characterization of materials by ultrasonic waves 383</p>
<p>14.8. Bibliography 388</p>
<p>14.9. Appendix 14A. Oblique incidence and energy propagation direction 389</p>
<p>14.10. Appendix 14B. Water immersion bench, measurement of coefficients of stiffness matrix 392</p>
<p>14B.1. Expression of phase velocity in the sample 393</p>
<p>14B.2. Phase velocity measurement by propagation time (?·?nt ) evaluation 394</p>
<p>14B.3. Phase velocity evaluation without time measurements 394</p>
<p>Chapter 15. Wave Dispersion in Rods with a Rectangular Cross–section: Higher Order Theory and Experimentation 397<br /> Maurice TOURATIER</p>
<p>15.1. Introduction 397</p>
<p>15.2. Summary table of some wave dispersion research 398</p>
<p>15.3. Longitudinal wave dispersion: influence of the material and geometry of the bounded medium 399</p>
<p>15.4. Bending wave dispersion 403</p>
<p>15.5. First order for torsional motion in a transverse isotropic rod 408</p>
<p>15.6. Interest in theories with higher degrees of approximation 414</p>
<p>15.7. Experimental set–ups to visualize stationary waves in rods 416</p>
<p>15.8. Electronic set–up and observed signals on a multi–channel oscilloscope 421</p>
<p>15.9. Presentation of experimental results 424</p>
<p>15.10. Concluding remarks 427</p>
<p>15.11. Bibliography 428</p>
<p>15.12. Appendix 15A. Touratier s theory using Hellinger Reissner s mixed fields 429</p>
<p>15A.1. Outline of Touratier s mixed field theory 429</p>
<p>15A.2. General equations deduced from the two fields principle 432</p>
<p>15A.3. Formulation of the boundary condition problem 432</p>
<p>15A.4. Symmetry considerations concerning the three kinds of motion 433</p>
<p>15A.5. Truncating process for one dimensional theories: extensional waves 437</p>
<p>15A.6. Equations of motion for extensional movement 438</p>
<p>15A.7. Effective front velocity and wave front velocity 439</p>
<p>15A.8. Bending equations of motion 441</p>
<p>15A.9. Equations of motion: torsional vibration 444</p>
<p>15.13. Appendix 15B. Third order Touratier s theory 445</p>
<p>15B.1. Extensional waves with nine evaluated modes 446</p>
<p>15B.2. Geometrical characteristics of displacement components uj mn and physical interpretation 447</p>
<p>15B.3. Bending mode in the direction x geometrical interpretation 448</p>
<p>15B.4. Shear motion around longitudinal rod axis 450</p>
<p>List of Authors 453</p>
<p>Index 455</p>
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht