Metaheuristics for Production Scheduling

Specificaties
Gebonden, 528 blz. | Engels
John Wiley & Sons | e druk, 2013
ISBN13: 9781848214972
Rubricering
Juridisch :
John Wiley & Sons e druk, 2013 9781848214972
Onderdeel van serie ISTE
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book describes the potentialities of metaheuristics for solving production scheduling problems and the relationship between these two fields.
For the past several years, there has been an increasing interest in using metaheuristic methods to solve scheduling problems. The main reasons for this are that such problems are generally hard to solve to optimality, as well as the fact that metaheuristics provide very good solutions in a reasonable time. The first part of the book presents eight applications of metaheuristics for solving various mono–objective scheduling problems. The second part is itself split into two, the first section being devoted to five multi–objective problems to which metaheuristics are adapted, while the second tackles various transportation problems related to the organization of production systems.
Many real–world applications are presented by the authors, making this an invaluable resource for researchers and students in engineering, economics, mathematics and computer science.

Contents

1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence–dependent Family Setup Times, Mansour Eddaly, Bassem Jarboui, Radhouan Bouabda, Patrick Siarry and Abdelwaheb Rebaï.
2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems, Imed Kacem.
3. A Hybrid GRASP–Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No–Wait Constraints, Hanen Akrout, Bassem Jarboui, Patrick Siarry and Abdelwaheb Rebaï.
4. A Comparison of Local Search Metaheuristics for a Hierarchical Flow Shop Optimization Problem with Time Lags, Emna Dhouib, Jacques Teghem, Daniel Tuyttens and Taïcir Loukil.
5. Neutrality in Flow Shop Scheduling Problems: Landscape Structure and Local Search, Marie–Eléonore Marmion.
6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to Hybrid Flow Shop Problem with Availability Constraints, Nadia Chaaben, Racem Mellouli and Faouzi Masmoudi.
7. Models and Methods in Graph Coloration for Various Production Problems, Nicolas Zufferey.
8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties, Mustapha Ratli, Rachid Benmansour, Rita Macedo, Saïd Hanafi, Christophe Wilbaut.
9. Metaheuristics for Biobjective Flow Shop Scheduling, Matthieu Basseur and Arnaud Liefooghe.
10. Pareto Solution Strategies for the Industrial Car Sequencing Problem, Caroline Gagné, Arnaud Zinflou and Marc Gravel.
11. Multi–Objective Metaheuristics for the Joint Scheduling of Production and Maintenance, Ali Berrichi and Farouk Yalaoui.
12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling, Fouzia Ounnar, Patrick Pujo and Afef Denguir.
13. A Multicriteria Genetic Algorithm for the Resource–constrained Task Scheduling Problem, Olfa Dridi, Saoussen Krichen and Adel Guitouni.
14. Metaheuristics for the Solution of Vehicle Routing Problems in a Dynamic Context, Tienté Hsu, Gilles Gonçalves and Rémy Dupas.
15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource–constrained Transport Activities, Virginie André, Nathalie Grangeon and Sylvie Norre.
16. Vehicle Routing Problems with Scheduling Constraints, Rahma Lahyani, Frédéric Semet and Benoît Trouillet.
17. Metaheuristics for Job Shop Scheduling with Transportation, Qiao Zhang, Hervé Manier, Marie–Ange Manier.

About the Authors

Bassem Jarboui is Professor at the University of Sfax, Tunisia.
Patrick Siarry is Professor at the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI), University of Paris–Est Créteil, France.
Jacques Teghem is Professor at the University of Mons, Belgium.

Specificaties

ISBN13:9781848214972
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:528
Serie:ISTE

Inhoudsopgave

<p>Introduction and Presentation&nbsp; xv<br /> Bassem JARBOUI, Patrick SIARRY and Jacques TEGHEM</p>
<p>Chapter 1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence–dependent Family Setup Times&nbsp;&nbsp; 1<br /> Mansour EDDALY, Bassem JARBOUI, Radhouan BOUABDA, Patrick SIARRY and Abdelwaheb REBA&Iuml;</p>
<p>1.1. Introduction&nbsp;&nbsp; 1</p>
<p>1.2. Mathematical formulation&nbsp;&nbsp; 3</p>
<p>1.3. Estimation of distribution algorithms&nbsp; 5</p>
<p>1.3.1. Estimation of distribution algorithms proposed in the literature&nbsp; 6</p>
<p>1.4. The proposed estimation of distribution algorithm&nbsp; 8</p>
<p>1.4.1. Encoding scheme and initial population&nbsp; 8</p>
<p>1.4.2. Selection 9</p>
<p>1.4.3. Probability estimation&nbsp;&nbsp;&nbsp; 9</p>
<p>1.5. Iterated local search algorithm&nbsp;&nbsp;&nbsp; 10</p>
<p>1.6. Experimental results&nbsp;&nbsp; 11</p>
<p>1.7. Conclusion 15</p>
<p>1.8. Bibliography&nbsp;&nbsp; 15</p>
<p>Chapter 2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems&nbsp; 19<br /> Imed KACEM</p>
<p>2.1. Introduction&nbsp;&nbsp; 19</p>
<p>2.2. Flexible job shop scheduling problems 19</p>
<p>2.3. Genetic algorithms for some related sub–problems 25</p>
<p>2.4. Genetic algorithms for the flexible job shop problem&nbsp; 31</p>
<p>2.4.1. Codings 31</p>
<p>2.4.2. Mutation operators&nbsp; 34</p>
<p>2.4.3. Crossover operators&nbsp; 38</p>
<p>2.5. Comparison of codings 42</p>
<p>2.6. Conclusion&nbsp; 43</p>
<p>2.7. Bibliography&nbsp;&nbsp; 43</p>
<p>Chapter 3. A Hybrid GRASP–Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No–Wait Constraints&nbsp;&nbsp; 45<br /> Hanen AKROUT, Bassem JARBOUI, Patrick SIARRY and Abdelwaheb REBA&Iuml;</p>
<p>3.1. Introduction&nbsp;&nbsp; 45</p>
<p>3.2. Overview of the literature&nbsp;&nbsp; 47</p>
<p>3.2.1. Single–solution metaheuristics 47</p>
<p>3.2.2. Population–based metaheuristics&nbsp; 49</p>
<p>3.2.3. Hybrid approaches&nbsp; 49</p>
<p>3.3. Description of the problem&nbsp;&nbsp; 50</p>
<p>3.4. GRASP&nbsp;&nbsp;&nbsp; 52</p>
<p>3.5. Differential evolution&nbsp; 53</p>
<p>3.6. Iterative local search&nbsp;&nbsp; 55</p>
<p>3.7. Overview of the NEW–GRASP–DE algorithm&nbsp; 55</p>
<p>3.7.1. Constructive phase&nbsp; 56</p>
<p>3.7.2. Improvement phase&nbsp; 57</p>
<p>3.8. Experimental results&nbsp;&nbsp; 57</p>
<p>3.8.1. Experimental results for the Reeves and Heller instances&nbsp; 58</p>
<p>3.8.2. Experimental results for the Taillard instances 60</p>
<p>3.9. Conclusion&nbsp; 62</p>
<p>3.10. Bibliography&nbsp; 64</p>
<p>Chapter 4. A Comparison of Local Search Metaheuristics for a Hierarchical Flow Shop Optimization Problem with Time Lags&nbsp;&nbsp;&nbsp; 69<br /> Emna DHOUIB, Jacques TEGHEM, Daniel TUYTTENS and Ta&iuml;cir LOUKIL</p>
<p>4.1. Introduction&nbsp;&nbsp; 69</p>
<p>4.2. Description of the problem&nbsp;&nbsp; 70</p>
<p>4.2.1. Flowshop with time lags&nbsp;&nbsp;&nbsp; 70</p>
<p>4.2.2. A bicriteria hierarchical flow shop problem&nbsp;&nbsp; 71</p>
<p>4.3. The proposed metaheuristics&nbsp;&nbsp;&nbsp; 73</p>
<p>4.3.1. A simulated annealing metaheuristics&nbsp;&nbsp; 74</p>
<p>4.3.2. The GRASP metaheuristics&nbsp;&nbsp; 77</p>
<p>4.4. Tests&nbsp;&nbsp; 82</p>
<p>4.4.1. Generated instances&nbsp; 82</p>
<p>4.4.2. Comparison of the results 83</p>
<p>4.5. Conclusion 94</p>
<p>4.6. Bibliography&nbsp;&nbsp; 94</p>
<p>Chapter 5. Neutrality in Flow Shop Scheduling Problems: Landscape Structure and Local Search&nbsp; 97<br /> Marie–El&eacute;onore MARMION</p>
<p>5.1. Introduction&nbsp;&nbsp; 97</p>
<p>5.2. Neutrality in a combinatorial optimization problem 98</p>
<p>5.2.1. Landscape in a combinatorial optimization problem 99</p>
<p>5.2.2. Neutrality and landscape&nbsp;&nbsp;&nbsp; 102</p>
<p>5.3. Study of neutrality in the flow shop problem 106</p>
<p>5.3.1. Neutral degree&nbsp;&nbsp; 106</p>
<p>5.3.2. Structure of the neutral landscape 108</p>
<p>5.4. Local search exploiting neutrality to solve the flow shop problem&nbsp;&nbsp; 112</p>
<p>5.4.1. Neutrality–based iterated local search&nbsp;&nbsp; 113</p>
<p>5.4.2. NILS on the flow shop problem&nbsp; 116</p>
<p>5.5. Conclusion&nbsp;&nbsp;&nbsp; 122</p>
<p>5.6. Bibliography&nbsp;&nbsp; 123</p>
<p>Chapter 6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to Hybrid Flow Shop Problem with Availability Constraints&nbsp; 127<br /> Nadia CHAABEN, Racem MELLOULI and Faouzi MASMOUDI</p>
<p>6.1. Introduction&nbsp;&nbsp; 127</p>
<p>6.2. Overview of the literature&nbsp;&nbsp; 128</p>
<p>6.3. Overview of the problem and notations used 131</p>
<p>6.4. Mathematical formulations&nbsp;&nbsp; 133</p>
<p>6.4.1. First formulation (MILP1) 133</p>
<p>6.4.2. Second formulation (MILP2) 135</p>
<p>6.4.3. Third formulation (MILP3)&nbsp;&nbsp; 137</p>
<p>6.5. A genetic algorithm: model and methodology&nbsp; 139</p>
<p>6.5.1. Coding used for our algorithm 139</p>
<p>6.5.2. Generating the initial population 140</p>
<p>6.5.3. Selection operator&nbsp; 142</p>
<p>6.5.4. Crossover operator&nbsp; 142</p>
<p>6.5.5. Mutation operator&nbsp; 144</p>
<p>6.5.6. Insertion operator 144</p>
<p>6.5.7. Evaluation function: fitness&nbsp;&nbsp; 144</p>
<p>6.5.8. Stop criterion&nbsp;&nbsp; 145</p>
<p>6.6. Verification and validation of the genetic algorithm&nbsp; 145</p>
<p>6.6.1. Description of benchmarks&nbsp; 145</p>
<p>6.6.2. Tests and results&nbsp;&nbsp; 146</p>
<p>6.7. Conclusion&nbsp; 148</p>
<p>6.8. Bibliography&nbsp;&nbsp; 148</p>
<p>Chapter 7. Models and Methods in Graph Coloration for Various Production Problems&nbsp; 153<br /> Nicolas ZUFFEREY</p>
<p>7.1. Introduction&nbsp;&nbsp; 153</p>
<p>7.2. Minimizing the makespan&nbsp;&nbsp; 155</p>
<p>7.2.1. Tabu algorithm&nbsp;&nbsp; 155</p>
<p>7.2.2. Hybrid genetic algorithm&nbsp;&nbsp;&nbsp; 157</p>
<p>7.2.3. Methods prior to GH&nbsp;&nbsp; 158</p>
<p>7.2.4. Extensions&nbsp; 159</p>
<p>7.3. Maximizing the number of completed tasks 160</p>
<p>7.3.1. Tabu algorithm&nbsp;&nbsp; 161</p>
<p>7.3.2. The ant colony algorithm&nbsp;&nbsp;&nbsp; 162</p>
<p>7.3.3. Extension of the problem&nbsp;&nbsp;&nbsp; 164</p>
<p>7.4. Precedence constraints 165</p>
<p>7.4.1. Tabu algorithm&nbsp;&nbsp; 168</p>
<p>7.4.2. Variable neighborhood search method&nbsp; 169</p>
<p>7.5. Incompatibility costs&nbsp;&nbsp; 171</p>
<p>7.5.1. Tabu algorithm&nbsp;&nbsp; 173</p>
<p>7.5.2. Adaptive memory method 175</p>
<p>7.5.3. Variations of the problem&nbsp;&nbsp;&nbsp; 177</p>
<p>7.6. Conclusion 178</p>
<p>7.7. Bibliography&nbsp;&nbsp; 179</p>
<p>Chapter 8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties&nbsp; 183<br /> Mustapha RATLI, Rachid BENMANSOUR, Rita MACEDO, Sa&iuml;d HANAFI, Christophe WILBAUT</p>
<p>8.1. Introduction&nbsp;&nbsp; 183</p>
<p>8.2. Properties and particular cases&nbsp;&nbsp;&nbsp; 185</p>
<p>8.3. Mathematical models&nbsp;&nbsp; 188</p>
<p>8.3.1. Linear models with precedence variables&nbsp; 188</p>
<p>8.3.2. Linear models with position variables 192</p>
<p>8.3.3. Linear models with time–indexed variables&nbsp;&nbsp; 194</p>
<p>8.3.4. Network flow models&nbsp;&nbsp; 197</p>
<p>8.3.5. Quadratic models 197</p>
<p>8.3.6. A comparative study&nbsp;&nbsp; 199</p>
<p>8.4. Heuristics&nbsp; 203</p>
<p>8.4.1. Properties&nbsp; 207</p>
<p>8.4.2. Evaluation&nbsp; 209</p>
<p>8.5. Metaheuristics 211</p>
<p>8.6. Conclusion&nbsp; 217</p>
<p>8.7. Acknowledgments&nbsp;&nbsp; 218</p>
<p>8.8. Bibliography&nbsp;&nbsp; 218</p>
<p>Chapter 9. Metaheuristics for Biobjective Flow Shop Scheduling&nbsp; 225<br /> Matthieu BASSEUR and Arnaud LIEFOOGHE</p>
<p>9.1. Introduction&nbsp;&nbsp; 225</p>
<p>9.2. Metaheuristics for multiobjective combinatorial optimization&nbsp; 226</p>
<p>9.2.1. Main concepts&nbsp;&nbsp; 227</p>
<p>9.2.2. Some methods&nbsp;&nbsp; 229</p>
<p>9.2.3. Performance analysis&nbsp;&nbsp; 232</p>
<p>9.2.4. Software and implementation 237</p>
<p>9.3. Multiobjective flow shop scheduling problems&nbsp;&nbsp; 238</p>
<p>9.3.1. Flow shop problems&nbsp;&nbsp; 239</p>
<p>9.3.2. Permutation flow shop with due dates&nbsp;&nbsp; 240</p>
<p>9.3.3. Different objective functions&nbsp;&nbsp; 241</p>
<p>9.3.4. Sets of data 241</p>
<p>9.3.5. Analysis of correlations between objectives functions&nbsp; 242</p>
<p>9.4. Application to the biobjective flow shop&nbsp;&nbsp; 243</p>
<p>9.4.1. Model&nbsp;&nbsp; 244</p>
<p>9.4.2. Solution methods&nbsp; 246</p>
<p>9.4.3. Experimental analysis&nbsp;&nbsp;&nbsp; 246</p>
<p>9.5. Conclusion&nbsp;&nbsp; 249</p>
<p>9.6. Bibliography&nbsp;&nbsp; 250</p>
<p>Chapter 10. Pareto Solution Strategies for the Industrial Car Sequencing Problem&nbsp;&nbsp; 253<br /> Caroline GAGN&Eacute;, Arnaud ZINFLOU and Marc GRAVEL</p>
<p>10.1. Introduction 253</p>
<p>10.2. Industrial car sequencing problem 255</p>
<p>10.3. Pareto strategies for solving the CSP 260</p>
<p>10.3.1. PMSMO&nbsp; 260</p>
<p>10.3.2. GISMOO&nbsp; 264</p>
<p>10.4. Numerical experiments&nbsp; 268</p>
<p>10.4.1. Test sets 269</p>
<p>10.4.2. Performance metrics&nbsp;&nbsp; 270</p>
<p>10.5. Results and discussion&nbsp; 271</p>
<p>10.6. Conclusion&nbsp;&nbsp; 279</p>
<p>10.7. Bibliography&nbsp; 280</p>
<p>Chapter 11. Multi–Objective Metaheuristics for the Joint Scheduling of Production and Maintenance 283<br /> Ali BERRICHI and Farouk YALAOUI</p>
<p>11.1. Introduction 283</p>
<p>11.2. State of the art on the joint problem&nbsp; 285</p>
<p>11.3. Integrated modeling of the joint problem&nbsp;&nbsp; 287</p>
<p>11.4. Concepts of multi–objective optimization&nbsp;&nbsp; 291</p>
<p>11.5. The particle swarm optimization method&nbsp;&nbsp; 292</p>
<p>11.6. Implementation of MOPSO algorithms&nbsp;&nbsp; 294</p>
<p>11.6.1. Representation and construction of the solutions 294</p>
<p>11.6.2. Solution Evaluation&nbsp;&nbsp; 295</p>
<p>11.6.3. The proposed MOPSO algorithms&nbsp;&nbsp; 298</p>
<p>11.6.4. Updating the velocities and positions&nbsp; 299</p>
<p>11.6.5. Hybridization with local searches&nbsp;&nbsp; 300</p>
<p>11.7. Experimental results&nbsp;&nbsp; 302</p>
<p>11.7.1. Choice of test problems and configurations&nbsp;&nbsp; 302</p>
<p>11.7.2. Experiments and analysis of the results&nbsp; 303</p>
<p>11.8. Conclusion&nbsp;&nbsp; 310</p>
<p>11.9. Bibliography&nbsp; 311</p>
<p>Chapter 12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling 315<br /> Fouzia OUNNAR, Patrick PUJO and Afef DENGUIR</p>
<p>12.1. Introduction 315</p>
<p>12.2. Methods for solving multicriteria scheduling&nbsp; 316</p>
<p>12.2.1. Optimization methods&nbsp;&nbsp;&nbsp; 316</p>
<p>12.2.2. Multicriteria decision aid methods&nbsp;&nbsp; 318</p>
<p>12.2.3. Choice of the multicriteria decision aid method 319</p>
<p>12.3. Presentation of the AHP method&nbsp;&nbsp; 320</p>
<p>12.3.1. Phase 1: configuration&nbsp;&nbsp;&nbsp; 320</p>
<p>12.3.2. Phase 2: exploitation&nbsp;&nbsp;&nbsp; 321</p>
<p>12.4. Evaluation of metaheuristics for the configuration of AHP&nbsp; 322</p>
<p>12.4.1. Local search methods&nbsp;&nbsp;&nbsp; 323</p>
<p>12.4.2. Population–based methods&nbsp;&nbsp; 324</p>
<p>12.4.3. Advanced metaheuristics&nbsp; 326</p>
<p>12.5. Choice of metaheuristic&nbsp; 326</p>
<p>12.5.1. Justification of the choice of genetic algorithms 326</p>
<p>12.5.2. Genetic algorithms&nbsp;&nbsp; 328</p>
<p>12.6. AHP optimization by a genetic algorithm&nbsp;&nbsp; 330</p>
<p>12.6.1. Phase 0: configuration of the structure of the problem&nbsp; 331</p>
<p>12.6.2. Phase 1: preparation for automatic configuration 332</p>
<p>12.6.3. Phase 2: automatic configuration&nbsp;&nbsp; 334</p>
<p>12.6.4. Phase 3: preparation of the exploitation phase&nbsp; 335</p>
<p>12.7. Evaluation of G–AHP 336</p>
<p>12.7.1. Analysis of the behavior of G–AHP&nbsp;&nbsp; 336</p>
<p>12.7.2. Analysis of the results obtained by G–AHP&nbsp;&nbsp; 342</p>
<p>12.8. Conclusions 343</p>
<p>12.9. Bibliography 344</p>
<p>Chapter 13. A Multicriteria Genetic Algorithm for the Resource–constrained Task Scheduling Problem&nbsp; 349<br /> Olfa DRIDI, Saoussen KRICHEN and Adel GUITOUNI</p>
<p>13.1. Introduction 349</p>
<p>13.2. Description and formulation of the problem&nbsp; 350</p>
<p>13.3. Literature review&nbsp; 353</p>
<p>13.3.1. Exact methods&nbsp;&nbsp; 354</p>
<p>13.3.2. Approximate methods&nbsp;&nbsp;&nbsp; 355</p>
<p>13.4. A multicriteria genetic algorithm for the MMSAP&nbsp; 356</p>
<p>13.4.1. Encoding variables&nbsp;&nbsp; 357</p>
<p>13.4.2. Genetic operators&nbsp; 358</p>
<p>13.4.3. Parameter settings&nbsp; 359</p>
<p>13.4.4. The GA 360</p>
<p>13.5. Experimental study&nbsp;&nbsp; 361</p>
<p>13.5.1. Diversification of the approximation set based on the diversity indicators&nbsp;&nbsp;&nbsp; 364</p>
<p>13.6. Conclusion&nbsp;&nbsp; 369</p>
<p>13.7. Bibliography&nbsp; 369</p>
<p>Chapter 14. Metaheuristics for the Solution of Vehicle Routing Problems in a Dynamic Context&nbsp;&nbsp; 373<br /> Tient&eacute; HSU, Gilles GON&Ccedil;ALVES and R&eacute;my DUPAS</p>
<p>14.1. Introduction&nbsp; 373</p>
<p>14.2. Dynamic vehicle route management&nbsp; 375</p>
<p>14.2.1. The vehicle routing problem with time windows 377</p>
<p>14.3. Platform for the solution of the DVRPTW&nbsp; 382</p>
<p>14.3.1. Encoding a chromosome&nbsp; 384</p>
<p>14.4. Treating uncertainties in the orders&nbsp; 386</p>
<p>14.5. Treatment of traffic information&nbsp;&nbsp; 392</p>
<p>14.6. Conclusion&nbsp;&nbsp; 397</p>
<p>14.7. Bibliography 398</p>
<p>Chapter 15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource–constrained Transport Activities 401<br /> Virginie ANDR&Eacute;, Nathalie GRANGEON and Sylvie NORRE</p>
<p>15.1. Knowledge model&nbsp;&nbsp; 403</p>
<p>15.1.1. Fixed resources and mobile resources&nbsp; 403</p>
<p>15.1.2. Modelling the activities in steps 404</p>
<p>15.1.3. The problem to be solved&nbsp; 406</p>
<p>15.1.4. Illustrative example&nbsp;&nbsp; 407</p>
<p>15.2. Solution procedure&nbsp;&nbsp; 410</p>
<p>15.3. Proposed approach&nbsp;&nbsp; 413</p>
<p>15.3.1. Metaheuristics&nbsp;&nbsp; 414</p>
<p>15.3.2. Simulation model&nbsp; 421</p>
<p>15.4. Implementation and results&nbsp;&nbsp;&nbsp; 422</p>
<p>15.4.1. Impact on the work mode&nbsp; 423</p>
<p>15.4.2. Results of the set of modifications to the teaching hospital&nbsp;&nbsp; 425</p>
<p>15.4.3. Preliminary study of the choice of shifts&nbsp;&nbsp; 428</p>
<p>15.5. Conclusion&nbsp;&nbsp; 430</p>
<p>15.6. Bibliography 431</p>
<p>Chapter 16. Vehicle Routing Problems with Scheduling Constraints 433<br /> Rahma LAHYANI, Fr&eacute;d&eacute;ric SEMET and Beno&icirc;t TROUILLET</p>
<p>16.1. Introduction 433</p>
<p>16.2. Definition, complexity and classification&nbsp;&nbsp; 435</p>
<p>16.2.1. Definition and complexity&nbsp;&nbsp; 435</p>
<p>16.2.2. Classification&nbsp;&nbsp; 436</p>
<p>16.3. Time–constrained vehicle routing problems 438</p>
<p>16.3.1. Vehicle routing problems with time windows 438</p>
<p>16.3.2. Period vehicle routing problems 441</p>
<p>16.3.3. Vehicle routing problem with cross–docking 443</p>
<p>16.4. Vehicle routing problems with resource availability constraints&nbsp; 448</p>
<p>16.4.1. Multi–trip vehicle routing problem&nbsp;&nbsp; 448</p>
<p>16.4.2. Vehicle routing problem with crew scheduling&nbsp; 450</p>
<p>16.5. Conclusion&nbsp;&nbsp; 452</p>
<p>16.6. Bibliography 453</p>
<p>Chapter 17. Metaheuristics for Job Shop Scheduling with Transportation 465<br /> Qiao ZHANG, Herv&eacute; MANIER, Marie–Ange MANIER</p>
<p>17.1. General flexible job shop scheduling problems&nbsp;&nbsp; 466</p>
<p>17.2. State of the art on job shop scheduling with transportation resources&nbsp;&nbsp;&nbsp; 468</p>
<p>17.3. GTSB procedure&nbsp; 474</p>
<p>17.3.1. A hybrid metaheuristic algorithm for the GFJSSP 474</p>
<p>17.3.2. Tests and results 480</p>
<p>17.3.3. Conclusion for GTSB&nbsp;&nbsp;&nbsp; 489</p>
<p>17.4. Conclusion&nbsp;&nbsp; 491</p>
<p>17.5. Bibliography 491</p>
<p>List of Authors&nbsp;&nbsp;&nbsp; 495</p>
<p>Index&nbsp; 499</p>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Metaheuristics for Production Scheduling