Orthogonal Latin Squares Based on Groups

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2018
ISBN13: 9783030068509
Rubricering
Juridisch :
Springer International Publishing e druk, 2018 9783030068509
Onderdeel van serie Developments in Mathematics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall–Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry.  
The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall–Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems.  
Expanding the author’s 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory—more advanced theories are introduced in the text as needed. 

Specificaties

ISBN13:9783030068509
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

Part I Introduction.- Latin Squares Based on Groups.- When is a Latin Square Based on a Group?.- Part II Admissable Groups.- The Existence Problem for Complete Mappings: The Hall-Paige Conjecture.- Some Classes of Admissible Groups.- The Groups GL(n,q), SL(n,q), PGL(n,q), and PSL(n,q).- Minimal Counterexamples to the Hall-Paige Conjecture.- A Proof of the Hall-Paige Conjecture.- Part III Orthomorphism Graphs of Groups.- Orthomorphism Graphs of Groups.- Elementary Abelian Groups I.- Elementary Abelian Groups II.- Extensions of Orthomorphism Graphs.- ω(G) for Some Classes of Nonabelian Groups.- Groups of Small Order.- Part IV Additional Topics.- Projective Planes from Complete Sets of Orthomorphisms.- Related Topics.- Problems.- References.- Index.

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Orthogonal Latin Squares Based on Groups