<div>1. Introduction: Primary Aluminium - Alumina - Bauxite (Benny E. Raahauge)</div><div>i. Property Driven Applications</div><div>ii. Supply-Demand Balance and Forecast</div><div>iii. Cost Drivers and Pricing</div><div>iv. Environmental Footprints and Challenges</div><div><br></div><div>2. Bauxite Mineralogy, Classification and Beneficiation (Hydro/RTA?)</div><div>i. Bauxite Resources</div><div>ii. Mineralogy and Chemistry</div><div>iii. Classification from Bayer Process Perspective</div><div>iv. Beneficiation Options</div><div><br></div><div>3. Bayer Process Design and Physical Chemistry (Steve Healy)</div><div>i. Bayer Process Design Overview</div><div>ii. Liquor Properties - Physio Chemical Data</div><div>iii. Lime (CaO) Chemistry</div><div><br></div><div>4. Bauxite Processing - Crushing/Grinding, De-silication and Digestion (CSIRO?)</div><div>i. Crushing & Grinding</div><div>ii. Silica Chemistry, Desilication Kinetics and Reactor Design</div><div>iii. Digestion Chemistry, Breakpoint and Kinetics</div><div>a. Maximum Extractable Alumina (MEA) and Breakpoint</div><div>b. Digestion Models</div><div>c. Degradation of Organics</div><div>iv. Digestion Conditions, Bauxite Mineralogy and Yield</div><div>a. Effect of Lime addition</div><div>b. Impact of impurities</div><div>v. Applied Digestion Technology and Heat Consumption</div><div>a. Autoclaves</div><div>b. Tube Digester</div><div>c. Double Digestion</div><div>vi. Digester Mass and Heat Balances</div><div>a. Theoretical Heat of Digestion</div><div>b. Boiling Point Elevation</div><div>c. Steam Requirements</div><div><br></div><div>5. De-sanding - Floculation / Sedimentation - Liquor Filtration (Tim Laros)</div><div>i. De-Sanding Equipment</div><div>ii. Flocculation and Sedimentation Principles</div><div>iii. Mud Rheology, Rake Drives and Mud Pumping</div><div>iv. Decantation and Clarification Technology</div><div>v. Rise Rate and Tank Design</div><div>vi. Pregnant/Green Liquor Filtration Options and Trends</div><div><br></div><div>6. Bauxite Residue: Washing - Dewatering (Tim Laros) and Disposal (Paul McGlade)</div><div>i. Mud Washing - Recovery of Soda and Alumina</div><div>ii. Dewatering Options: Filtration and Centrifuging</div><div>a. Filtration Theory and Applications</div><div>b. Filtration Pressure and Equipment Options</div><div>c. Centrifuge Theory and Applications</div><div>iii. Mud Cake Disposal Options and Principle</div><div>a. Wet Disposal w/wo Neutralization</div><div>b. Dry Stacking w/wo Mud Farming</div><div>c. Dry Disposal </div><div> </div><div>7. Hydrate Precipitation (Dennis R. Audet) , Classification and Filtration (Manfred Bach)</div><div>i. Hydrate Crystallization Fundamentals</div><div>a. Nucleation, Agglomeration, Breakage and Growth</div><div>b. Crystallization Mechanism and Kinetics</div><div>c. Heat of Crystallization</div><div>d. Control of Residual Soda</div><div>e. Impact of Organics and other impurities on Yield</div><div>ii. Precipitation Flow Sheets and Particle Morphology</div><div>a. Retention Time and Temperature Profile impact on Yield</div><div>b. Modelling of Precipitation Flow sheet</div><div>iii. Precipitator Tank Design Options</div><div>a. Agitation and Mixing</div><div>b. Hydrodynamic Effects on Yield</div><div>iv. Classification Options and Mass Balance Control</div><div>a. Hydro Clones</div><div>b. Fine Seed Thickener</div><div>v. Seed and Product Hydrate Filtration Options</div><div>a. Seed Preparation</div><div>b. Washing Efficiency and Flow sheets</div><div><br></div><div>8. Liquor Purification and Impurity Control (Steve Healy)</div><div>i. Organics removal</div><div>ii. Removal of Inorganic impurities</div><div>a. Iron</div><div>b. Phosphor</div><div>c. Other…</div><div><br></div><div>9. Water Balance, Evaporation, Heat Exchange and Co-Generation (Daniel Thomas)</div><div>i. Refinery Water Balance</div><div>ii. Bayer Process Heat Balance</div><div>a. Heat Transfer </div><div>b. Inter-department heat exchange</div><div>iii. Evaporation</div><div>iv. Co-Generation of Steam and Power</div><div><br></div><div>10. Alumina Production by Calcination (Benny E. Raahauge)</div><div>i. Calcination Chemistry, Phase Changes and Combustion</div><div>a. Chemistry, Degree of Calcination and Stoichiometry</div><div>b. Crystalline and X-Ray Amorphous Phases</div><div>c. Fuels and Combustion Products - Acid dew Point</div><div>ii. Drying and Calcination Theory</div><div>a. Gas-Solid Heat Transfer and Drying/Calcination</div><div>b. Heat Conduction</div><div>c. Alpha Phase Formation and Kinetics</div><div>iii. Heat of Calcination</div><div>a. Standard Heats of Reaction</div><div>b. Calcination Heat in Practice</div><div>iv. Calcination Furnace/Reactor Design and Operating Conditions</div><div>a. Rotary Kiln</div><div>b. Fluid Flash (FF) and Gas Suspension Calciner (GSC)</div><div>c. Fluidization and the Circulating Fluid Bed (CFB)</div><div>d. Gas Suspension Calciner Reaction Model<div>v. Gas-Solid Separation in Cyclones</div><div>vi. Air Pollution Control and Dust Management</div><div>a. Gas Emissions and Carbon Foot Print</div><div>b. Particulate Dust Emissions and Management Options</div><div>c. Electrostatic Precipitator or Bag House </div><div>vii. Refractory Selection and Surface Heat Losses</div><div>viii. Calcination Flow Sheet Options</div><div>a. Heat Recovery Options</div><div>b. Hydrate By-Pass and Alumina Quality</div><div>c. Heat Balance and Specific Heat Consumption</div><div>d. Specific Power Consumption</div><div>ix. Particle Breakdown and Strength During Calcination</div><div>a. Particle Breakdown Defined and Observed</div><div>b. Attrition Index Defined and Observed</div><div>c. Impact from Precipitation and Calcination</div><div><br></div><div>11. Alumina Quality, HF Removal, Dissolution and Aluminium Purity (Stephen Lindsay)</div><div>i. Chemical Composition of Smelter Grade Alumina</div><div>a. Loss of Ignition (LOI) and Degree of Calcination</div><div>b. Phase Composition and Alpha Alumina Content</div><div>c. Chemical Composition and Gibbsite </div><div>ii. Physical Properties of Smelter Grade Alumina</div><div>a. Particle Size Distribution, Dustiness and Attrition Index</div><div>b. Angle of Repose and Flow ability</div><div>c. Bulk Density and Heat Conductivity </div><div>d. Specific Surface Area and Pore Size Distribution</div><div>iii. Efficient HF Removal and Dry-Scrubber Efficiency (Margaret Hyland)</div><div>a. Sources of HF from Smelting</div><div>b. Pore Size Distribution and accessible Specific Surface Area</div><div> Primary Alumina</div><div> Secondary Alumina</div><div>c. The Role of Sulfur Dioxide?</div><div>iv. Alumina Dissolution and Current Efficiency (Pascal Lavoie)</div><div>a. Theoretical Analysis of Dissolution Process</div><div>b. Dissolution Rate under Laboratory Conditions</div><div> Effect of Particle Size Distribution: Sandy vs Floury</div><div> Effect of Phase Composition: Gamma vs Alpha</div><div>c. Impact of Calcination Technology</div><div>d. Impact of Alumina Feeder Design and Operation </div><div>v. Impurities impact on Aluminium Production, Purity and Properties</div><div>a. Soda and CaO</div><div>b. Silica and Iron</div><div>c. Phosphor and Beryllium</div><div>d. Vanadium and Sulfur</div><div><br></div><div>12. Alumina Storage and Handling Options</div><div><br></div><div>13. Health, Safety and Plant Management (Carlos Suarez)</div><div><br></div><div>14. Process Control, Simulation and Operator Training (NN?)</div><div><br></div><div>15. Process Economics and Plant Design (Peter-Hans Ter Weer)</div><div><br></div></div>