,

Smelter Grade Alumina from Bauxite

History, Best Practices, and Future Challenges

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2023
ISBN13: 9783030885885
Rubricering
Juridisch :
Springer International Publishing e druk, 2023 9783030885885
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides a comprehensive review of the production of smelter grade alumina from bauxite ores. It emphasizes the best practices applied in the industry today but seen in a historical context with a view to future challenges and developments. The control of alumina quality is discussed in detail including the effects that alumina quality have  on the aluminum smelter process with respect to environmental performance, current efficiency, and metal purity. The discussion of alumina quality will be relevant to people on the smelter side, as this is the interface between refinery and smelter. Emphasis is placed on the major steps of the Bayer Process including: digestion, clarification, precipitation, calcination, and management of water, energy, and bauxite residue. This book is a valuable resource for active, seasoned practitioners and for new engineers entering the industry.

Specificaties

ISBN13:9783030885885
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

<div>1. Introduction: Primary Aluminium - Alumina - Bauxite (Benny E. Raahauge)</div><div>i. Property Driven &nbsp;Applications</div><div>ii. Supply-Demand Balance and Forecast</div><div>iii. Cost Drivers and Pricing</div><div>iv. Environmental Footprints and Challenges</div><div><br></div><div>2. Bauxite Mineralogy, Classification and Beneficiation (Hydro/RTA?)</div><div>i. Bauxite Resources</div><div>ii. Mineralogy and Chemistry</div><div>iii. Classification from Bayer Process Perspective</div><div>iv. Beneficiation Options</div><div><br></div><div>3. Bayer Process Design and Physical Chemistry &nbsp;(Steve Healy)</div><div>i. Bayer Process Design Overview</div><div>ii. Liquor Properties - Physio Chemical Data</div><div>iii. Lime (CaO) Chemistry</div><div><br></div><div>4. Bauxite Processing - Crushing/Grinding, De-silication and Digestion (CSIRO?)</div><div>i. Crushing & Grinding</div><div>ii. Silica Chemistry, Desilication Kinetics and Reactor Design</div><div>iii. Digestion Chemistry, Breakpoint and Kinetics</div><div>a. Maximum Extractable &nbsp;Alumina (MEA) and Breakpoint</div><div>b. Digestion Models</div><div>c. Degradation of Organics</div><div>iv. Digestion Conditions, Bauxite Mineralogy and Yield</div><div>a. Effect of Lime addition</div><div>b. Impact of impurities</div><div>v. Applied Digestion Technology and Heat Consumption</div><div>a. Autoclaves</div><div>b. Tube Digester</div><div>c. Double Digestion</div><div>vi. Digester Mass and Heat Balances</div><div>a. Theoretical Heat of Digestion</div><div>b. Boiling Point Elevation</div><div>c. Steam Requirements</div><div><br></div><div>5. De-sanding - Floculation / Sedimentation - Liquor Filtration (Tim Laros)</div><div>i. De-Sanding Equipment</div><div>ii. Flocculation and Sedimentation Principles</div><div>iii. Mud Rheology, Rake Drives and Mud Pumping</div><div>iv. Decantation and Clarification Technology</div><div>v. Rise Rate and Tank Design</div><div>vi. Pregnant/Green Liquor Filtration Options and Trends</div><div><br></div><div>6. Bauxite Residue: Washing - Dewatering (Tim Laros) and Disposal (Paul McGlade)</div><div>i. Mud Washing - Recovery of Soda and Alumina</div><div>ii. Dewatering Options: Filtration and Centrifuging</div><div>a. Filtration Theory and Applications</div><div>b. Filtration Pressure and Equipment Options</div><div>c. Centrifuge Theory and Applications</div><div>iii. Mud Cake Disposal Options and Principle</div><div>a. Wet Disposal w/wo Neutralization</div><div>b. Dry Stacking w/wo Mud Farming</div><div>c. Dry Disposal&nbsp;</div><div>&nbsp;</div><div>7. Hydrate Precipitation (Dennis R. Audet) , Classification and Filtration (Manfred Bach)</div><div>i. Hydrate Crystallization Fundamentals</div><div>a. Nucleation, Agglomeration, Breakage and Growth</div><div>b. Crystallization Mechanism and Kinetics</div><div>c. Heat of Crystallization</div><div>d. Control of Residual Soda</div><div>e. Impact of Organics and other impurities on Yield</div><div>ii. Precipitation Flow Sheets and Particle Morphology</div><div>a. Retention Time and Temperature Profile impact on Yield</div><div>b. Modelling of Precipitation Flow sheet</div><div>iii. Precipitator Tank Design Options</div><div>a. Agitation and Mixing</div><div>b. Hydrodynamic Effects on Yield</div><div>iv. Classification Options and Mass Balance Control</div><div>a. Hydro Clones</div><div>b. Fine Seed Thickener</div><div>v. Seed and Product Hydrate Filtration Options</div><div>a. Seed Preparation</div><div>b. Washing Efficiency and Flow sheets</div><div><br></div><div>8. Liquor Purification and Impurity Control (Steve Healy)</div><div>i. Organics removal</div><div>ii. Removal of Inorganic impurities</div><div>a. Iron</div><div>b. Phosphor</div><div>c. Other…</div><div><br></div><div>9. Water Balance, Evaporation, Heat Exchange and Co-Generation (Daniel Thomas)</div><div>i. Refinery Water Balance</div><div>ii. Bayer Process Heat Balance</div><div>a. Heat Transfer&nbsp;</div><div>b. Inter-department heat exchange</div><div>iii. Evaporation</div><div>iv. Co-Generation of Steam and Power</div><div><br></div><div>10. Alumina Production by Calcination (Benny E. Raahauge)</div><div>i. Calcination Chemistry, Phase Changes and Combustion</div><div>a. Chemistry, Degree of Calcination and Stoichiometry</div><div>b. Crystalline and X-Ray Amorphous Phases</div><div>c. Fuels and Combustion Products - Acid dew Point</div><div>ii. Drying and Calcination Theory</div><div>a. Gas-Solid Heat Transfer and Drying/Calcination</div><div>b. Heat Conduction</div><div>c. Alpha Phase Formation and Kinetics</div><div>iii. Heat of Calcination</div><div>a. Standard Heats of Reaction</div><div>b. Calcination Heat in Practice</div><div>iv. Calcination Furnace/Reactor Design and Operating Conditions</div><div>a. Rotary Kiln</div><div>b. Fluid Flash (FF) and Gas Suspension Calciner (GSC)</div><div>c. Fluidization and the Circulating Fluid Bed (CFB)</div><div>d. Gas Suspension Calciner Reaction Model<div>v. Gas-Solid Separation in Cyclones</div><div>vi. Air Pollution Control and Dust Management</div><div>a. Gas Emissions and Carbon Foot Print</div><div>b. Particulate Dust Emissions and Management Options</div><div>c. Electrostatic Precipitator or Bag House&nbsp;</div><div>vii. Refractory Selection and Surface Heat Losses</div><div>viii. Calcination Flow Sheet Options</div><div>a. Heat Recovery Options</div><div>b. Hydrate By-Pass and Alumina Quality</div><div>c. Heat Balance and Specific Heat Consumption</div><div>d. Specific Power Consumption</div><div>ix. Particle Breakdown and Strength During Calcination</div><div>a. Particle Breakdown Defined and Observed</div><div>b. Attrition Index Defined and Observed</div><div>c. Impact from Precipitation and Calcination</div><div><br></div><div>11. Alumina Quality, HF Removal, &nbsp;Dissolution and Aluminium Purity (Stephen Lindsay)</div><div>i. Chemical Composition of Smelter Grade Alumina</div><div>a. Loss of Ignition (LOI) and Degree of Calcination</div><div>b. Phase Composition and Alpha Alumina Content</div><div>c. Chemical Composition and Gibbsite&nbsp;</div><div>ii. Physical Properties of Smelter Grade Alumina</div><div>a. Particle Size Distribution, Dustiness and Attrition Index</div><div>b. Angle of Repose and Flow ability</div><div>c. Bulk Density and Heat Conductivity&nbsp;</div><div>d. Specific Surface Area and Pore Size Distribution</div><div>iii. Efficient HF Removal and Dry-Scrubber Efficiency (Margaret Hyland)</div><div>a. Sources of HF from Smelting</div><div>b. Pore Size Distribution and accessible Specific Surface Area</div><div> Primary Alumina</div><div> Secondary Alumina</div><div>c. The Role of Sulfur Dioxide?</div><div>iv. Alumina Dissolution and Current Efficiency (Pascal Lavoie)</div><div>a. Theoretical Analysis of Dissolution Process</div><div>b. Dissolution Rate under Laboratory Conditions</div><div> Effect of Particle Size Distribution: Sandy vs Floury</div><div> Effect of Phase Composition: Gamma vs Alpha</div><div>c. Impact of Calcination Technology</div><div>d. Impact of Alumina Feeder Design and Operation&nbsp;</div><div>v. Impurities impact on Aluminium &nbsp;Production, Purity and Properties</div><div>a. Soda and CaO</div><div>b. Silica and Iron</div><div>c. Phosphor and Beryllium</div><div>d. Vanadium and Sulfur</div><div><br></div><div>12. Alumina Storage and Handling Options</div><div><br></div><div>13. Health, Safety and Plant Management (Carlos Suarez)</div><div><br></div><div>14. Process Control, Simulation and Operator Training (NN?)</div><div><br></div><div>15. Process Economics and Plant Design (Peter-Hans Ter Weer)</div><div><br></div></div>

Net verschenen

Rubrieken

    Personen

      Trefwoorden

        Smelter Grade Alumina from Bauxite