1 Introduction.- References.- 2 Third-Order Nonlinear Optics in Polar Materials.- 2.1 Introduction.- 2.1.1 Motivation.- 2.1.2 Basic Concept of Cascading.- 2.1.3 Definition of Nonlinear Optical Coefficients.- 2.1.4 Materials Requirements for All-Optical Signal Processing.- 2.2 Optical Nonlinearities.- 2.2.1 Organic Nonlinear Optical Materials.- 2.2.2 Macroscopic Second-Order Nonlinear Optical Effects.- 2.2.3 Macroscopic Third-Order Nonlinear Optical Effects.- 2.3 Cascaded Second-Order Nonlinearities X(2) : X(2).- 2.3.1 Second-Harmonic Generation and Sum-Frequency Generation.- 2.3.2 Cascading Through the Reaction Field in Centrosymmetric Media.- 2.3.3 Cascading Through the Local Field.- 2.3.4 Second-Harmonic Generation and Difference Frequency Mixing.- 2.3.5 Optical Rectification and Linear Electro-Optic Effect.- 2.3.6 Limits of the Cascaded Response in Molecular Crystals.- 2.4 Nonlinear Optical Molecules.- 2.4.1 Third-Harmonic Generation.- 2.4.2 Electric Field-Induced Second-Harmonic Generation.- 2.5 Nonlinear Optical Single Crystals.- 2.5.1 Third-Harmonic Generation.- 2.5.2 z-Scan Technique.- 2.6 Discussion and Conclusion.- 2.6.1 Second- and Third-Harmonic Generation.- 2.6.2 Cascaded X(2) : X(2) for the Optical Kerr Effect.- 2.6.3 Final Remarks and Outlook.- A.l Definition of Nonlinear Optical Susceptibilities.- A.2 Conversion Between SI, cgs and Atomic Units.- A.3 Theoretical Description of Third-Harmonic Generation.- A.4 Theoretical Description of Electric Field-Induced Second-Harmonic Generation.- A.5 Theoretical Description of the z-Scan Technique.- A.6 List of Symbols and Abbreviations.- References.- 3 Second-Order Nonlinear Optical Organic Materials: Recent Developments.- 3.1 Nonlinear Optical and Electro-Optic Effects.- 3.1.1 Sum Frequency Generation and Optical Frequency Doubling.- 3.1.2 Difference Frequency Generation and Optic Parametric Oscillation/Generation.- 3.1.3 Conservation of Energy and Momentum.- 3.1.4 Linear Electro-Optic Effect.- 3.2 Material Considerations.- 3.2.1 Dispersion of the Nonlinear and Electro-Optic Coefficients.- 3.2.2 Symmetry Considerations for Second-Order Nonlinear Optical Materials.- 3.3 Organic Nonlinear Optical Molecules.- 3.3.1 Measurement Techniques.- 3.3.2 Discussion of Second-Order Nonlinear Optical Molecules.- 3.4 Nonlinear and Electro-Optic Single Crystals and Polymers.- 3.4.1 Measurement Techniques.- 3.4.2 Single Crystals.- 3.4.3 Poled Polymers.- 3.4.4 Inorganic Dielectrics and Semiconductors.- 3.5 Applications.- 3.5.1 Optical Frequency Conversion.- 3.5.2 Short-Pulse Laser Applications.- 3.5.3 Polymer-Based Electro-Optic Modulators.- 3.5.4 Electro-Optic Sampling.- 3.5.5 THz Generation.- 3.5.6 Thermo-Optic Switches.- 3.6 Stability of Nonlinear and Electro-Optic Materials and Their Properties.- 3.6.1 Optical Damage Threshold.- 3.6.2 Orientational Relaxation of Poled Polymers.- 3.7 Concluding Remarks and Outlook.- References.- 4 The Photorefractive Effect in Inorganic and Organic Materials.- 4.1 Photoinduced Changes of Optical Properties and Photorefractive Effect.- 4.2 Charge Transport in Inorganic and Organic Materials.- 4.2.1 Band Transport.- 4.2.2 Hopping Transport.- 4.2.3 Geminate Recombination.- 4.3 Model Descriptions of the Photorefractive Effect and Photoassisted Orientational Grätings.- 4.3.1 Band Model of the Photorefractive Effect.- 4.3.2 Model for the Space Charge Fields in Polymers.- 4.4 Electro-Optic Response.- 4.4.1 Pockels Effect.- 4.4.2 Lattice Distortions and Electro-Optics.- 4.4.3 Molecular Reorientation.- 4.5 Measurement Techniques.- 4.5.1 Two-Wave Mixing.- 4.5.2 Bragg Diffraction.- 4.6 Applications.- 4.6.1 Thick Volume Grätings.- 4.6.2 Thin Grätings.- 4.6.3 Materials Requirements and Figures of Merit.- 4.7 Materials.- 4.7.1 Photorefractive Materials.- 4.7.2 Polymers and Liquid Crystals Showing Photorefractive and Photoassisted Orientational Grätings.- 4.7.3 Wavelength Sensitivity.- 4.7.4 Comparison of Materials Properties.- 4.8 Conclusions.- References.- 5 Photorefractive Memories for Optical Processing.- 5.1 Volumetrie Optical Data Storage.- 5.1.1 Light Diffraction Volume Grätings.- 5.1.2 Hologram Multiplexing Methods.- 5.1.3 System Architecture.- 5.1.4 Storage Capacity of Volume Media.- 5.2 Optical Pattern Recognition.- 5.2.1 Optical Correlators.- 5.2.2 Optical Pattern Recognition Using Volume Holograms.- 5.3 Holographie Associative Memories.- 5.3.1 Linear Holographie Associative Memories.- 5.3.2 Nonlinear Holographie Associative Memories.- 5.3.3 Ring Resonator Associative Memories.- 5.4 Photorefractive Materials as Volume Storage Media.- 5.4.1 Recording Schemes.- 5.4.2 Storage Capacity of Photorefractive Holographie Media.- 5.4.3 Hologram Fixing and Nondestructive Readout.- 5.4.4 Coherent Erasure and Updating of Holograms.- 5.5 Optical Correlators Using Photorefractive Crystals.- 5.6 All-optical Nonlinear Associative Memories.- 5.6.1 Thin Storage Media Implementations.- 5.6.2 Volume Storage in Associative Memories.- 5.7 Summary.- References.- 6 Second-Harmonic Generation in Ferroelectric Waveguides.- 6.1 Second-Harmonic Generation in Waveguides: Basic Concepts.- 6.1.1 Planar and Channel Waveguides.- 6.1.2 Figures of Merit for Second-Harmonic Generation in Waveguides.- 6.1.3 Phase Matching Schemes for Second-Harmonic Generation in Waveguides.- 6.2 Ferroelectric Waveguides: Overview.- 6.3 Lithium Niobate Waveguides.- 6.3.1 Titanium-Indiffused Lithium Niobate Waveguides.- 6.3.2 Proton-Exchanged Lithium Niobate Waveguides.- 6.3.3 Domain Inversion and Quasi-Phase-Matching in Lithium Niobate.- 6.3.4 Optical Damage in Lithium Niobate Waveguides.- 6.3.5 Second-Harmonic Generation in Lithium Niobate Waveguides ..- 6.4 Lithium Tantalate Waveguides.- 6.4.1 Fabrication and Properties of Proton-Exchanged Lithium Tantalate Waveguides.- 6.4.2 Domain Inversion and Quasi-Phase-Matching in Lithium Tantalate.- 6.4.3 Second-Harmonic Generation in Lithium Tantalate Waveguides.- 6.5 Potassium Titanyl Phosphate Waveguides.- 6.5.1 Fabrication and Properties of Rubidium-Exchanged Potassium Titanyl Phosphate Waveguides.- 6.5.2 Second-Harmonic Generation in Potassium Titanyl Phosphate Waveguides.- 6.6 Potassium Niobate Waveguides.- 6.6.1 Fabrication of Ion-Implanted Waveguides in Potassium Niobate.- 6.6.2 Linear Properties of Potassium Niobate Waveguides.- 6.6.3 Power-Handling Capabilities of Potassium Niobate Waveguides.- 6.6.4 Second-Harmonic Generation in Potassium Niobate Waveguides.- 6.7 Discussion and Concluding Remarks.- References.