Application of AI in Credit Scoring Modeling
Samenvatting
The scope of this study is to investigate the capability of AI methods to accurately detect and predict credit risks based on retail borrowers' features. The comparison of logistic regression, decision tree, and random forest showed that machine learning methods are able to predict credit defaults of individuals more accurately than the logit model. Furthermore, it was demonstrated how random forest and decision tree models were more sensitive in detecting default borrowers.
Specificaties
Inhoudsopgave
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht

