Variational and Quasi-Variational Inequalities in Mechanics
Samenvatting
The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.
Specificaties
Inhoudsopgave
1.1. Notations and Conventions; 1.2. Functional spaces; 1.3. Bases and complete systems. Existence theorem; 1.4. Trace Theorem; 1.5. The laws of thermodynamics;
2. Variational Setting of Linear Steady-state Problems:
2.1. Problem of the equilibrium of system with a finite number of degrees of Freedom; 2.2. Equilibrium of the simplest continuous systems governed by ordinary differential Equations; 2.3. 3D and 2D problems on the equilibrium of linear elastic bodies; 3.4. Positive definiteness of the potential energy of linear systems;
3.Variational Theory for Nonlinear Smooth Systems:
3.1. Examples of nonlinear systems; 3.2. Differentiation of operators and functionals; 3.3. Existence and uniqueness theorems of the minimal point of a functional; 3.4. Condition for the potentiality of an operator; 3.5. Boundary value problems in the Hencky-Ilyushin theory of plasticity without discharge; 3.6. Problems in the elastic bodies theory with finite displacements and strain;
4. Unilateral Constraints and Non-Differentiable Functionals:
4.1. Introduction: systems with finite degrees of freedom; 4.2. Variational methods in contact problems for deformed bodies without friction; 4.3. Variational method in contact problem with friction;
5. The Transformation of Variational Principles:
5.1. Friedrichs Transformation; 5.2. Equilibrium, mixed and hybrid variational principles in the theory of elasticity; 5.3. The Young-Fenchel-Moreau duality transformation; 5.4. Applications of duality transformations in contact problems;
6. Non-Stationary Problems and Thermodynamics:
6.1. Traditional principles and methods; 6.2. Gurtin’s method; 6.3. Thermodynamics and mechanics of the deformed solids; 6.4. The variational theory of adhesion and crack initiation;
7. Solution Methods and Numerical implementation:
7.1. Frictionless contact problems: finite element method (FEM); 7.2. Friction contact problems: boundaryelement method (BEM);
8. Concluding Remarks:
8.1. Modelling. Identification problem. Optimization; 8.2. Development of the contact problems with friction, wear and adhesion; 8.3. Numerical implementation of the contact interaction phenomena;
References; Index.
Net verschenen
Rubrieken
- aanbestedingsrecht
- aansprakelijkheids- en verzekeringsrecht
- accountancy
- algemeen juridisch
- arbeidsrecht
- bank- en effectenrecht
- bestuursrecht
- bouwrecht
- burgerlijk recht en procesrecht
- europees-internationaal recht
- fiscaal recht
- gezondheidsrecht
- insolventierecht
- intellectuele eigendom en ict-recht
- management
- mens en maatschappij
- milieu- en omgevingsrecht
- notarieel recht
- ondernemingsrecht
- pensioenrecht
- personen- en familierecht
- sociale zekerheidsrecht
- staatsrecht
- strafrecht en criminologie
- vastgoed- en huurrecht
- vreemdelingenrecht